CCRss commited on
Commit
db01cb8
·
verified ·
1 Parent(s): 38f4f3e

Upload modeling_internvl_chat.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_internvl_chat.py +630 -0
modeling_internvl_chat.py ADDED
@@ -0,0 +1,630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch.utils.checkpoint
11
+ import transformers
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss
14
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
15
+ Qwen2ForCausalLM)
16
+ from transformers.modeling_outputs import CausalLMOutputWithPast
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import ModelOutput, logging
19
+ from transformers import WhisperConfig, WhisperModel, WhisperProcessor
20
+ from .configuration_internvl_chat import InternVLChatConfig
21
+ from .conversation import get_conv_template
22
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ def version_cmp(v1, v2, op='eq'):
28
+ import operator
29
+
30
+ from packaging import version
31
+ op_func = getattr(operator, op)
32
+ return op_func(version.parse(v1), version.parse(v2))
33
+
34
+
35
+ class InternVLChatModel(PreTrainedModel):
36
+ config_class = InternVLChatConfig
37
+ main_input_name = 'pixel_values'
38
+ base_model_prefix = 'language_model'
39
+ _supports_flash_attn_2 = True
40
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
41
+
42
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
43
+ super().__init__(config)
44
+
45
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
46
+ image_size = config.force_image_size or config.vision_config.image_size
47
+ patch_size = config.vision_config.patch_size
48
+ self.patch_size = patch_size
49
+ self.select_layer = config.select_layer
50
+ self.template = config.template
51
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
52
+ self.downsample_ratio = config.downsample_ratio
53
+ self.ps_version = config.ps_version
54
+ use_flash_attn = use_flash_attn if has_flash_attn else False
55
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
56
+ config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
57
+
58
+ logger.info(f'num_image_token: {self.num_image_token}')
59
+ logger.info(f'ps_version: {self.ps_version}')
60
+ if vision_model is not None:
61
+ self.vision_model = vision_model
62
+ else:
63
+ self.vision_model = InternVisionModel(config.vision_config)
64
+ if language_model is not None:
65
+ self.language_model = language_model
66
+ else:
67
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
68
+ self.language_model = LlamaForCausalLM(config.llm_config)
69
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
70
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
71
+ else:
72
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
73
+
74
+
75
+ # whisper model
76
+ whisper_config = WhisperConfig(**self.config.audio_config)
77
+ self.audio_model = WhisperModel.from_pretrained(
78
+ "/data/nvme5n1p1/vladimir_workspace/audio_internvl/models/whisper-large-v3-turbo",
79
+ config=whisper_config,
80
+ torch_dtype=torch.float16,
81
+ low_cpu_mem_usage=True,
82
+ )
83
+ # Remove decoder since we only need the encoder
84
+ del self.audio_model.decoder
85
+
86
+ # Initialize audio processor
87
+ self.audio_processor = WhisperProcessor.from_pretrained("/data/nvme5n1p1/vladimir_workspace/audio_internvl/models/whisper-large-v3-turbo")
88
+
89
+ # Get hidden sizes
90
+ vit_hidden_size = config.vision_config.hidden_size
91
+ llm_hidden_size = config.llm_config.hidden_size
92
+ whisper_hidden_size = self.audio_model.config.d_model
93
+
94
+ self.mlp1 = nn.Sequential(
95
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
96
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
97
+ nn.GELU(),
98
+ nn.Linear(llm_hidden_size, llm_hidden_size)
99
+ )
100
+
101
+ # Audio projection
102
+ self.mlp2 = nn.Sequential(
103
+ nn.LayerNorm(whisper_hidden_size),
104
+ nn.Linear(whisper_hidden_size, llm_hidden_size),
105
+ nn.GELU(),
106
+ nn.Linear(llm_hidden_size, llm_hidden_size)
107
+ )
108
+
109
+ self.audio_context_token_id = None
110
+
111
+ self.img_context_token_id = None
112
+ self.conv_template = get_conv_template(self.template)
113
+ self.system_message = self.conv_template.system_message
114
+
115
+ def process_audio_feature(self, audio_values, audio_flags):
116
+ print("\n=== Processing Audio Features ===")
117
+ print(f"Input audio shape: {audio_values.shape}")
118
+ print(f"Audio flags shape: {audio_flags.shape}")
119
+
120
+ # Ensure float32 for audio input
121
+ audio_values = audio_values.to(torch.float32)
122
+ print(f"Audio values min/max: {audio_values.min():.3f}/{audio_values.max():.3f}")
123
+
124
+ # Convert audio to features
125
+ if len(audio_values.shape) == 2:
126
+ audio_list = [arr.cpu().numpy() for arr in audio_values]
127
+ else:
128
+ audio_list = [audio_values.cpu().numpy()]
129
+
130
+ processed_audio = self.audio_processor(
131
+ audio_list,
132
+ sampling_rate=16000,
133
+ return_tensors="pt"
134
+ )
135
+ audio_features = processed_audio["input_features"].to(self.device)
136
+ print(f"Processed audio features shape: {audio_features.shape}")
137
+
138
+ # Convert to float32 before encoder
139
+ audio_features = audio_features.to(torch.float32)
140
+
141
+ # Get encoder outputs
142
+ with torch.cuda.amp.autocast(enabled=False): # Disable mixed precision
143
+ audio_outputs = self.audio_model.encoder(audio_features)
144
+ audio_embeds = audio_outputs.last_hidden_state
145
+
146
+ print(f"Whisper encoder output shape: {audio_embeds.shape}")
147
+ audio_embeds = audio_embeds.to(torch.float32) # Ensure float32
148
+ print(f"Encoder output min/max: {audio_embeds.min():.3f}/{audio_embeds.max():.3f}")
149
+
150
+ # Reshape to match the expected number of tokens (300)
151
+ B, T, C = audio_embeds.shape
152
+ target_length = 300
153
+
154
+ # Use adaptive pooling to get the desired length
155
+ adaptive_pool = torch.nn.AdaptiveAvgPool1d(target_length)
156
+ audio_embeds = audio_embeds.transpose(1, 2) # [B, C, T]
157
+ audio_embeds = adaptive_pool(audio_embeds) # [B, C, 300]
158
+ audio_embeds = audio_embeds.transpose(1, 2) # [B, 300, C]
159
+ print(f"After pooling shape: {audio_embeds.shape}")
160
+
161
+ # More robust normalization before MLP2
162
+ audio_embeds = audio_embeds.float()
163
+
164
+ # First normalize per-token with more stable computation
165
+ mean = audio_embeds.mean(dim=-1, keepdim=True)
166
+ std = audio_embeds.std(dim=-1, keepdim=True)
167
+ # Add larger epsilon and clip std to avoid division by zero
168
+ std = torch.clamp(std, min=1e-6)
169
+ audio_embeds = (audio_embeds - mean) / std
170
+
171
+ # Clip extreme values more conservatively
172
+ audio_embeds = torch.clamp(audio_embeds, -2.0, 2.0)
173
+
174
+ # Apply LayerNorm with larger eps
175
+ layer_norm = nn.LayerNorm(audio_embeds.shape[-1], eps=1e-4).to(audio_embeds.device)
176
+ audio_embeds = layer_norm(audio_embeds)
177
+
178
+ print(f"Pre-MLP2 stats - min: {audio_embeds.min():.3f}, max: {audio_embeds.max():.3f}")
179
+
180
+ # Project to LLM dimension with gradient scaling and additional checks
181
+ with torch.cuda.amp.autocast(enabled=False):
182
+ # Pre-normalize and scale more carefully
183
+ mean = audio_embeds.mean(dim=-1, keepdim=True)
184
+ std = audio_embeds.std(dim=-1, keepdim=True)
185
+ std = torch.clamp(std, min=1e-6)
186
+ audio_embeds = (audio_embeds - mean) / std
187
+
188
+ # Scale down more conservatively before MLP2
189
+ audio_embeds = audio_embeds * 0.05 # Reduced from 0.1
190
+
191
+ # Apply MLP2 with gradient scaling
192
+ audio_embeds = self.mlp2(audio_embeds)
193
+
194
+ if torch.isnan(audio_embeds).any() or torch.isinf(audio_embeds).any():
195
+ print("WARNING: NaN/Inf detected after MLP2! Using robust recovery...")
196
+ audio_embeds = torch.nan_to_num(audio_embeds, nan=0.0, posinf=1.0, neginf=-1.0)
197
+
198
+ # Normalize with small noise
199
+ mean = audio_embeds.mean(dim=-1, keepdim=True)
200
+ std = audio_embeds.std(dim=-1, keepdim=True)
201
+ std = torch.clamp(std, min=1e-6)
202
+ audio_embeds = (audio_embeds - mean) / std
203
+ audio_embeds = audio_embeds + torch.randn_like(audio_embeds) * 0.0001
204
+
205
+ # Final scaling to match LLM exactly
206
+ llm_std = 0.009
207
+ audio_embeds = audio_embeds * llm_std
208
+
209
+ return audio_embeds
210
+
211
+ def forward(
212
+ self,
213
+ pixel_values: torch.FloatTensor = None,
214
+ audio_values: torch.FloatTensor = None,
215
+ input_ids: torch.LongTensor = None,
216
+ attention_mask: Optional[torch.Tensor] = None,
217
+ position_ids: Optional[torch.LongTensor] = None,
218
+ image_flags: Optional[torch.LongTensor] = None,
219
+ audio_flags: Optional[torch.LongTensor] = None,
220
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
221
+ labels: Optional[torch.LongTensor] = None,
222
+ use_cache: Optional[bool] = None,
223
+ output_attentions: Optional[bool] = None,
224
+ output_hidden_states: Optional[bool] = None,
225
+ return_dict: Optional[bool] = None,
226
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
227
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
228
+
229
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
230
+ B, N, C = input_embeds.shape
231
+ input_embeds = input_embeds.reshape(B * N, C)
232
+ input_ids = input_ids.reshape(B * N)
233
+
234
+ # Process images if present
235
+ if pixel_values is not None:
236
+ image_flags = image_flags.squeeze(-1)
237
+ vit_embeds = self.extract_feature(pixel_values)
238
+ vit_embeds = vit_embeds[image_flags == 1]
239
+ vit_batch_size = pixel_values.shape[0]
240
+
241
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
242
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
243
+
244
+ image_selected = (input_ids == self.img_context_token_id)
245
+ try:
246
+ input_embeds[image_selected] = input_embeds[image_selected] * 0.0 + vit_embeds.reshape(-1, C)
247
+ except Exception as e:
248
+ vit_embeds = vit_embeds.reshape(-1, C)
249
+ n_token = image_selected.sum()
250
+ input_embeds[image_selected] = input_embeds[image_selected] * 0.0 + vit_embeds[:n_token]
251
+
252
+ # Process audio if present
253
+ if audio_values is not None and audio_flags is not None:
254
+ audio_flags = audio_flags.squeeze(-1)
255
+ audio_embeds = self.process_audio_feature(audio_values, audio_flags)
256
+ audio_batch_size = audio_values.shape[0] if len(audio_values.shape) > 1 else 1
257
+
258
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
259
+ print(f'dynamic Audio batch size: {audio_batch_size}, audio per sample: {audio_batch_size / B}, dynamic token length: {N}')
260
+
261
+ audio_selected = (input_ids == self.audio_context_token_id)
262
+ try:
263
+ input_embeds[audio_selected] = input_embeds[audio_selected] * 0.0 + audio_embeds.reshape(-1, C)
264
+ except Exception as e:
265
+ audio_embeds = audio_embeds.reshape(-1, C)
266
+ n_token = audio_selected.sum()
267
+ input_embeds[audio_selected] = input_embeds[audio_selected] * 0.0 + audio_embeds[:n_token]
268
+
269
+ input_embeds = input_embeds.reshape(B, N, C)
270
+
271
+ outputs = self.language_model(
272
+ inputs_embeds=input_embeds,
273
+ attention_mask=attention_mask,
274
+ position_ids=position_ids,
275
+ past_key_values=past_key_values,
276
+ use_cache=use_cache,
277
+ output_attentions=output_attentions,
278
+ output_hidden_states=output_hidden_states,
279
+ return_dict=return_dict,
280
+ )
281
+ logits = outputs.logits
282
+
283
+ loss = None
284
+ if labels is not None:
285
+ shift_logits = logits[..., :-1, :].contiguous()
286
+ shift_labels = labels[..., 1:].contiguous()
287
+ loss_fct = CrossEntropyLoss()
288
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
289
+ shift_labels = shift_labels.view(-1)
290
+ shift_labels = shift_labels.to(shift_logits.device)
291
+ loss = loss_fct(shift_logits, shift_labels)
292
+
293
+ if not return_dict:
294
+ output = (logits,) + outputs[1:]
295
+ return (loss,) + output if loss is not None else output
296
+
297
+ return CausalLMOutputWithPast(
298
+ loss=loss,
299
+ logits=logits,
300
+ past_key_values=outputs.past_key_values,
301
+ hidden_states=outputs.hidden_states,
302
+ attentions=outputs.attentions,
303
+ )
304
+
305
+ def pixel_shuffle(self, x, scale_factor=0.5):
306
+ n, w, h, c = x.size()
307
+ # N, W, H, C --> N, W, H * scale, C // scale
308
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
309
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
310
+ x = x.permute(0, 2, 1, 3).contiguous()
311
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
312
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
313
+ int(c / (scale_factor * scale_factor)))
314
+ if self.ps_version == 'v1':
315
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
316
+ 'which results in a transposed image.')
317
+ else:
318
+ x = x.permute(0, 2, 1, 3).contiguous()
319
+ return x
320
+
321
+ def extract_feature(self, pixel_values):
322
+ if self.select_layer == -1:
323
+ vit_embeds = self.vision_model(
324
+ pixel_values=pixel_values,
325
+ output_hidden_states=False,
326
+ return_dict=True).last_hidden_state
327
+ else:
328
+ vit_embeds = self.vision_model(
329
+ pixel_values=pixel_values,
330
+ output_hidden_states=True,
331
+ return_dict=True).hidden_states[self.select_layer]
332
+ vit_embeds = vit_embeds[:, 1:, :]
333
+
334
+ h = w = int(vit_embeds.shape[1] ** 0.5)
335
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
336
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
337
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
338
+ vit_embeds = self.mlp1(vit_embeds)
339
+ return vit_embeds
340
+
341
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
342
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
343
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
344
+ if history is not None or return_history:
345
+ print('Now multi-turn chat is not supported in batch_chat.')
346
+ raise NotImplementedError
347
+
348
+ if image_counts is not None:
349
+ num_patches_list = image_counts
350
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
351
+
352
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
353
+ self.img_context_token_id = img_context_token_id
354
+
355
+ if verbose and pixel_values is not None:
356
+ image_bs = pixel_values.shape[0]
357
+ print(f'dynamic ViT batch size: {image_bs}')
358
+
359
+ queries = []
360
+ for idx, num_patches in enumerate(num_patches_list):
361
+ question = questions[idx]
362
+ if pixel_values is not None and '<image>' not in question:
363
+ question = '<image>\n' + question
364
+ template = get_conv_template(self.template)
365
+ template.system_message = self.system_message
366
+ template.append_message(template.roles[0], question)
367
+ template.append_message(template.roles[1], None)
368
+ query = template.get_prompt()
369
+
370
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
371
+ query = query.replace('<image>', image_tokens, 1)
372
+ queries.append(query)
373
+
374
+ tokenizer.padding_side = 'left'
375
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
376
+ input_ids = model_inputs['input_ids'].to(self.device)
377
+ attention_mask = model_inputs['attention_mask'].to(self.device)
378
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
379
+ generation_config['eos_token_id'] = eos_token_id
380
+ generation_output = self.generate(
381
+ pixel_values=pixel_values,
382
+ input_ids=input_ids,
383
+ attention_mask=attention_mask,
384
+ **generation_config
385
+ )
386
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
387
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
388
+ return responses
389
+
390
+ def chat(self, tokenizer, pixel_values=None, question=None, generation_config=None,
391
+ history=None, return_history=False, num_patches_list=None,
392
+ IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
393
+ AUDIO_START_TOKEN='<audio>', AUDIO_END_TOKEN='</audio>', AUDIO_CONTEXT_TOKEN='<AUDIO_CONTEXT>',
394
+ verbose=False, **kwargs): # Add **kwargs to catch extra arguments
395
+ """Chat function that handles both text-only and multimodal inputs"""
396
+ print("=== Starting Chat Process ===")
397
+ print(f"Question: {question}")
398
+ print(f"Input types - Pixel values: {type(pixel_values)}, Audio values: {type(kwargs.get('audio_values'))}")
399
+
400
+ # Basic input validation
401
+ if question is None:
402
+ raise ValueError("Question cannot be None")
403
+ if not isinstance(question, str):
404
+ raise ValueError(f"Question must be string, got {type(question)}")
405
+
406
+ audio_values = kwargs.get('audio_values', None)
407
+
408
+ # Handle image prompt
409
+ if history is None and pixel_values is not None and '<image>' not in question:
410
+ question = '<image>\n' + question
411
+ print("Added image token to question")
412
+
413
+ # Handle audio prompt
414
+ if history is None and audio_values is not None and '<audio>' not in question:
415
+ question = '<audio>\n' + question
416
+ print("Added audio token to question")
417
+
418
+ # Process image patches
419
+ if num_patches_list is None:
420
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
421
+ if pixel_values is not None:
422
+ assert len(pixel_values) == sum(num_patches_list)
423
+ print(f"Image patches: {num_patches_list}")
424
+
425
+ # Set context token IDs
426
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
427
+ audio_context_token_id = tokenizer.convert_tokens_to_ids(AUDIO_CONTEXT_TOKEN)
428
+ self.img_context_token_id = img_context_token_id
429
+ self.audio_context_token_id = audio_context_token_id
430
+ print(f"Token IDs - Image: {img_context_token_id}, Audio: {audio_context_token_id}")
431
+
432
+ # Process template and history
433
+ # Prepare conversation template
434
+ template = get_conv_template(self.template)
435
+ template.system_message = self.system_message
436
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
437
+
438
+ history = [] if history is None else history
439
+ for old_question, old_answer in history:
440
+ template.append_message(template.roles[0], old_question)
441
+ template.append_message(template.roles[1], old_answer)
442
+ template.append_message(template.roles[0], question)
443
+ template.append_message(template.roles[1], None)
444
+ query = template.get_prompt()
445
+ print(f"Processed query: {query[:100]}...") # Print first 100 chars
446
+
447
+ if verbose:
448
+ if pixel_values is not None:
449
+ print(f'dynamic ViT batch size: {pixel_values.shape[0]}')
450
+ if audio_values is not None:
451
+ print(f'dynamic Audio batch size: {audio_values.shape[0]}')
452
+
453
+ # Insert image tokens
454
+ for num_patches in num_patches_list:
455
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
456
+ query = query.replace('<image>', image_tokens, 1)
457
+
458
+ # Insert audio tokens (assuming one audio per query)
459
+ if audio_values is not None:
460
+ audio_tokens = AUDIO_START_TOKEN + AUDIO_CONTEXT_TOKEN * 300 + AUDIO_END_TOKEN
461
+ query = query.replace('<audio>', audio_tokens, 1)
462
+
463
+ # Add debug prints
464
+ print("\n=== Audio Token Debug ===")
465
+ print(f"AUDIO_START_TOKEN: {AUDIO_START_TOKEN} (id: {tokenizer.convert_tokens_to_ids(AUDIO_START_TOKEN)})")
466
+ print(f"AUDIO_CONTEXT_TOKEN: {AUDIO_CONTEXT_TOKEN} (id: {tokenizer.convert_tokens_to_ids(AUDIO_CONTEXT_TOKEN)})")
467
+ print(f"AUDIO_END_TOKEN: {AUDIO_END_TOKEN} (id: {tokenizer.convert_tokens_to_ids(AUDIO_END_TOKEN)})")
468
+
469
+ # Verify token presence
470
+ test_tokens = tokenizer(query, return_tensors='pt')['input_ids'][0]
471
+ context_token_count = (test_tokens == self.audio_context_token_id).sum()
472
+ print(f"Number of AUDIO_CONTEXT tokens found: {context_token_count} (should be 300)")
473
+
474
+ # Print full tokenization of a small segment
475
+ audio_segment = query[query.find(AUDIO_START_TOKEN):query.find(AUDIO_END_TOKEN)+len(AUDIO_END_TOKEN)]
476
+ print("\nTokenization of audio segment:")
477
+ tokens = tokenizer.tokenize(audio_segment)
478
+ print(f"First 10 tokens: {tokens[:10]}...")
479
+ print(f"Last 10 tokens: {tokens[-10:]}")
480
+
481
+ # Prepare model inputs
482
+ model_inputs = tokenizer(query, return_tensors='pt')
483
+ print("Model inputs:")
484
+ print(f"input_ids shape: {model_inputs['input_ids'].shape}")
485
+ print(f"First few tokens: {tokenizer.convert_ids_to_tokens(model_inputs['input_ids'][0][:20])}")
486
+ input_ids = model_inputs['input_ids'].to(self.device)
487
+ attention_mask = model_inputs['attention_mask'].to(self.device)
488
+ generation_config['eos_token_id'] = eos_token_id
489
+
490
+ # Ensure generation_config is a proper dictionary
491
+ if generation_config is None or not isinstance(generation_config, dict):
492
+ generation_config = {}
493
+
494
+ # Set default generation parameters
495
+ default_config = {
496
+ "do_sample": True,
497
+ "temperature": 0.7,
498
+ "top_p": 0.9,
499
+ "max_new_tokens": 256,
500
+ "repetition_penalty": 1.2,
501
+ "no_repeat_ngram_size": 3,
502
+ "pad_token_id": tokenizer.pad_token_id,
503
+ "eos_token_id": eos_token_id
504
+ }
505
+
506
+ # Update with user provided config
507
+ for k, v in default_config.items():
508
+ if k not in generation_config:
509
+ generation_config[k] = v
510
+
511
+ # Create GenerationConfig object
512
+ generation_config = GenerationConfig(**generation_config)
513
+
514
+ # Generate response
515
+ generation_output = self.generate(
516
+ pixel_values=pixel_values,
517
+ audio_values=audio_values,
518
+ input_ids=input_ids,
519
+ attention_mask=attention_mask,
520
+ generation_config=generation_config,
521
+ )
522
+
523
+ # Process response
524
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
525
+ response = response.split(template.sep.strip())[0].strip()
526
+ history.append((question, response))
527
+
528
+ if return_history:
529
+ return response, history
530
+ else:
531
+ # Clean up query for printing
532
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '').replace(AUDIO_CONTEXT_TOKEN, '')
533
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
534
+ query_to_print = query_to_print.replace(f'{AUDIO_START_TOKEN}{AUDIO_END_TOKEN}', '<audio>')
535
+ if verbose:
536
+ print(query_to_print, response)
537
+ return response
538
+
539
+ @torch.no_grad()
540
+ def generate(self, pixel_values=None, audio_values=None, input_ids=None,
541
+ attention_mask=None, visual_features=None, generation_config=None,
542
+ output_hidden_states=None, **generate_kwargs):
543
+
544
+ print("\n=== Generate Method Debug ===")
545
+
546
+ # Get initial embeddings and check statistics
547
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
548
+ initial_std = input_embeds.std().item()
549
+ print(f"LLM embedding stats - mean: {input_embeds.mean():.3f}, std: {initial_std:.3f}")
550
+
551
+ B, N, C = input_embeds.shape
552
+ print(f"Initial embeddings shape: {input_embeds.shape}")
553
+
554
+ input_embeds = input_embeds.reshape(B * N, C)
555
+ input_ids = input_ids.reshape(B * N)
556
+
557
+ if audio_values is not None:
558
+ assert self.audio_context_token_id is not None
559
+ print("\nAudio Processing:")
560
+ print(f"Audio context token ID: {self.audio_context_token_id}")
561
+
562
+ audio_embeds = self.process_audio_feature(
563
+ audio_values,
564
+ torch.ones(audio_values.shape[0]).to(audio_values.device)
565
+ )
566
+
567
+ # Scale audio embeddings to match LLM embeddings
568
+ audio_embeds = audio_embeds * (initial_std / audio_embeds.std().item())
569
+
570
+ print(f"Processed audio embeds shape: {audio_embeds.shape}")
571
+ print(f"Audio embedding stats after scaling - mean: {audio_embeds.mean():.3f}, std: {audio_embeds.std():.3f}")
572
+
573
+ audio_selected = (input_ids == self.audio_context_token_id)
574
+ num_audio_tokens = audio_selected.sum()
575
+ print(f"Number of audio context tokens found: {num_audio_tokens}")
576
+
577
+ try:
578
+ input_embeds[audio_selected] = audio_embeds.reshape(-1, C).to(input_embeds.device)
579
+ print("Successfully inserted audio embeddings")
580
+ except Exception as e:
581
+ print(f"Error inserting audio embeddings: {e}")
582
+ raise
583
+
584
+ # Reshape back
585
+ input_embeds = input_embeds.reshape(B, N, C)
586
+
587
+ # Final normalization of combined embeddings
588
+ input_embeds = torch.nn.functional.layer_norm(
589
+ input_embeds,
590
+ input_embeds.shape[-1:],
591
+ eps=1e-5
592
+ ) * initial_std # Scale back to original magnitude
593
+
594
+ print("\nFinal combined embedding stats:")
595
+ print(f"Mean: {input_embeds.mean():.3f}, Std: {input_embeds.std():.3f}")
596
+ print(f"Min: {input_embeds.min():.3f}, Max: {input_embeds.max():.3f}")
597
+
598
+ # Final safety check before generation
599
+ if torch.isnan(input_embeds).any() or torch.isinf(input_embeds).any():
600
+ raise ValueError("Critical: Found NaN/Inf values in embeddings before generation!")
601
+
602
+ # Generate output with additional error handling
603
+ try:
604
+ outputs = self.language_model.generate(
605
+ inputs_embeds=input_embeds,
606
+ attention_mask=attention_mask,
607
+ generation_config=generation_config,
608
+ output_hidden_states=output_hidden_states,
609
+ use_cache=True,
610
+ **generate_kwargs,
611
+ )
612
+ except RuntimeError as e:
613
+ if "probability tensor contains either `inf`" in str(e):
614
+ print("ERROR: Invalid probability distribution. Attempting recovery...")
615
+ # Try with more conservative generation settings
616
+ generate_kwargs["temperature"] = 1.0 # Reset temperature
617
+ generate_kwargs["top_p"] = 1.0 # Disable top_p
618
+ generate_kwargs["do_sample"] = False # Fall back to greedy
619
+ outputs = self.language_model.generate(
620
+ inputs_embeds=input_embeds,
621
+ attention_mask=attention_mask,
622
+ generation_config=generation_config,
623
+ output_hidden_states=output_hidden_states,
624
+ use_cache=True,
625
+ **generate_kwargs,
626
+ )
627
+ else:
628
+ raise
629
+
630
+ return outputs