FAT5-base-flan-en / flash_attention_v2_bias.py
bourdoiscatie's picture
Upload 10 files
a0e4338 verified
# Copyright 2023 BAAI
# Copyright 2024 CATIE
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modifications to the orignal file
# - Support for biases following https://github.com/FlagOpen/FlagAttention/pull/5
# - Support for shape (1,1,q,k) biases
import math
import torch
import triton
import triton.language as tl
# Wrapper for triton kernel for torch.compile - should be unecessary for PyTorch 2.3 ?
torch.library.define("flasht5::flash_attn_v2_fwd", "(Tensor q, Tensor k, Tensor v, Tensor bias, bool causal, float sm_scale, int BLOCK_M, int BLOCK_N, int num_warps, int num_stages) -> (Tensor, Tensor)")
@torch.library.impl("flasht5::flash_attn_v2_fwd", "default")
def flash_attn_v2_fwd(q, k, v, bias, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):
B, H, M, D = q.shape
N = k.shape[2]
P_SEQ = N - M
larger_m = M > N
# Trick to support shape such as (1, 1, seqlen_q, seqlen_k)
bias_batch_stride = bias.stride(0) if bias is not None else 0
bias_heads_stride = bias.stride(1) if bias is not None else 0
if bias is not None:
if (bias.shape[0] != q.shape[0]) and (bias.shape[0] == 1):
bias_batch_stride = 0
if (bias.shape[1] != q.shape[1]) and (bias.shape[1] == 1):
bias_heads_stride = 0
divisible_m = M % BLOCK_M == 0
divisible_n = N % BLOCK_N == 0
# consider using 3d grid to avoid div & rem
grid = (triton.cdiv(M, BLOCK_M), H, B)
o = torch.empty_like(q)
L = torch.empty((B, H, M), device=q.device, dtype=torch.float32)
_fwd_kernel[grid](
q, k, v, bias, sm_scale,
L, o,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
bias_batch_stride, bias_heads_stride,
bias.stride(2) if bias is not None else 0,
bias.stride(3) if bias is not None else 0,
B, H, M, N, P_SEQ,
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_DMODEL=D,
IS_CAUSAL=causal, LARGER_M=larger_m,
DIVISIBLE_M=divisible_m, DIVISIBLE_N=divisible_n,
HAS_BIAS=(bias is not None),
num_warps=num_warps, num_stages=num_stages,
)
return o, L
@torch.library.impl_abstract("flasht5::flash_attn_v2_fwd", flash_attn_v2_fwd)
def flash_attn_v2_fwd_abstract(q, k, v, bias, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):
B, H, M, D = q.shape
o = torch.empty_like(q)
L = torch.empty((B, H, M), dtype=torch.float32, device=q.device)
return o, L
torch.library.define("flasht5::flash_attn_v2_bwd", "(Tensor o, Tensor do, Tensor q, Tensor k, Tensor v, Tensor bias, Tensor L, bool causal, float sm_scale, int BLOCK_M, int BLOCK_N, int num_warps, int num_stages) -> (Tensor, Tensor, Tensor, Tensor)")
@torch.library.impl("flasht5::flash_attn_v2_bwd", "default")
def flash_attn_v2_bwd(o, do, q, k, v, bias, L, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):
B, H, M, D = q.shape
N = k.shape[2]
P_SEQ = N - M
larger_m = M > N
divisible_m = M % BLOCK_M == 0
divisible_n = N % BLOCK_N == 0
# Trick to support shape such as (1, 1, seqlen_q, seqlen_k)
bias_batch_stride = bias.stride(0) if bias is not None else 0
bias_heads_stride = bias.stride(1) if bias is not None else 0
if bias is not None:
if (bias.shape[0] != q.shape[0]) and (bias.shape[0] == 1):
bias_batch_stride = 0
if (bias.shape[1] != q.shape[1]) and (bias.shape[1] == 1):
bias_heads_stride = 0
delta = torch.empty_like(L)
grid = (triton.cdiv(M, BLOCK_M), H, B)
_bwd_preprocess[grid](
o, do,
delta,
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
do.stride(0), do.stride(1), do.stride(2), do.stride(3),
delta.stride(0), delta.stride(1), delta.stride(2),
M,
BLOCK_M=BLOCK_M, D_HEAD=D,
DIVISIBLE_M=divisible_m,
)
dk = torch.empty_like(k)
dv = torch.empty_like(v)
HAS_BIAS = bias is not None
RETURN_DS = HAS_BIAS
USE_DS_ATOMIC_ADD = (bias_batch_stride == 0) or (bias_heads_stride == 0)
ds = None
if RETURN_DS:
ds = torch.empty_like(bias)
if USE_DS_ATOMIC_ADD:
ds = ds.zero_()
grid = (triton.cdiv(N, BLOCK_N), H, B)
_bwd_kv_kernel[grid](
q, k, v, bias, sm_scale, do,
dk, dv, ds,
L, delta,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
bias_batch_stride, bias_heads_stride,
bias.stride(2) if HAS_BIAS else 0,
bias.stride(3) if HAS_BIAS else 0,
do.stride(0), do.stride(1), do.stride(2), do.stride(3),
dk.stride(0), dk.stride(1), dk.stride(2), dk.stride(3),
dv.stride(0), dv.stride(1), dv.stride(2), dv.stride(3),
B, H, M, N, P_SEQ,
BLOCK_M=BLOCK_M, BLOCK_DMODEL=D, BLOCK_N=BLOCK_N, CAUSAL=causal,
DIVISIBLE_M=divisible_m, DIVISIBLE_N=divisible_n,
HAS_BIAS=HAS_BIAS,
RETURN_DS=RETURN_DS, USE_DS_ATOMIC_ADD=USE_DS_ATOMIC_ADD,
num_stages=num_stages, num_warps=num_warps,
)
dq = torch.empty_like(q)
grid = (triton.cdiv(M, BLOCK_M), H, B)
_bwd_q_kernel[grid](
q, k, v, bias, sm_scale, do,
dq,
L, delta,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
bias_batch_stride, bias_heads_stride,
bias.stride(2) if HAS_BIAS else 0,
bias.stride(3) if HAS_BIAS else 0,
do.stride(0), do.stride(1), do.stride(2), do.stride(3),
dq.stride(0), dq.stride(1), dq.stride(2), dq.stride(3),
B, H, M, N, P_SEQ,
BLOCK_M=BLOCK_M, BLOCK_DMODEL=D, BLOCK_N=BLOCK_N,
CAUSAL=causal, LARGER_M=larger_m,
DIVISIBLE_M=divisible_m, DIVISIBLE_N=divisible_n,
HAS_BIAS=HAS_BIAS,
num_stages=num_stages, num_warps = num_warps,
)
return dq, dk, dv, ds
@torch.library.impl_abstract("flasht5::flash_attn_v2_bwd", flash_attn_v2_bwd)
def cross_entropy_triton_bwd_abstract(o, do, q, k, v, bias, L, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages):
dq = torch.empty_like(q)
dk = torch.empty_like(k)
dv = torch.empty_like(v)
ds = torch.empty_like(bias) if bias is not None else None
return dq, dk, dv, ds
class FlashAttention(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, bias, causal, sm_scale):
Dq, Dk, Dv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Dq == Dk == Dv
assert Dk in {16, 32, 64, 128}
B, H, M, D = q.shape
N = k.shape[2]
if sm_scale is None:
sm_scale = 1. / math.sqrt(D)
config = get_fwd_config(B, H, M, N, D, causal)
BLOCK_M, BLOCK_N, num_stages, num_warps = config
o, L = torch.ops.flasht5.flash_attn_v2_fwd(q, k, v, bias, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages)
# autograd context maintenance
ctx.save_for_backward(q, k, v, bias, o, L)
ctx.sm_scale = sm_scale
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do, *ignored):
q, k, v, bias, o, L = ctx.saved_tensors
sm_scale = ctx.sm_scale
causal = ctx.causal
B, H, M, D = q.shape
N = k.shape[2]
if sm_scale is None:
sm_scale = 1. / math.sqrt(D)
config = get_bwd_config(B, H, M, N, D, causal)
BLOCK_M, BLOCK_N, num_stages, num_warps = config
dq, dk, dv, ds = torch.ops.flasht5.flash_attn_v2_bwd(o, do, q, k, v, bias, L, causal, sm_scale, BLOCK_M, BLOCK_N, num_warps, num_stages)
return dq, dk, dv, ds, None, None, None, None
def attention(q, k, v, bias, causal=False, sm_scale=None):
"""
An implementation of FlashAttention v2(https://arxiv.org/abs/2307.08691).
Arguments:
q(torch.Tensor): The first queries. The shape is (batch_size, nheads, seqlen_q, headdim).
k(torch.Tensor): The first keys. The shape is (batch_size, nheads, seqlen_k, headdim).
v(torch.Tensor): The values. The shape is (batch_size, nheads, seqlen_k, headdim).
causal(bool): Whether causal masking is applied to attention scores before applying softmax.
sm_scale(float): The scaling of attention scores before applying softmax.
Returns:
out(torch.Tensor): The output. The shape is (batch_size, nheads, seqlen_q, headdim).
"""
return FlashAttention.apply(q, k, v, bias, causal, sm_scale)
# --------------------------- Forward ---------------------------
# NOTE: this function can be overwritten at runtime to use your custom config
def get_fwd_config(B, H, M, N, D, causal):
if torch.cuda.get_device_capability() == (8, 0):
if not causal:
if D <= 64:
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 64, 3, 4
else:
if M <= 1024:
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 3, 4
else:
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 128, 3, 8
else:
if D <= 64:
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 64, 4, 4
else:
if M <= 1024:
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 2, 4
else:
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 128, 3, 8
elif torch.cuda.get_device_capability() == (8, 6):
if not causal:
if D <= 64:
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 64, 3, 4
else:
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 2, 4
else: # causal
if D <= 64:
BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 3, 4
else:
BLOCK_M, BLOCK_N, num_stages, num_warps = 128, 32, 2, 4
else:
BLOCK_M, BLOCK_N, num_stages, num_warps = 32, 32, 1, 4
return (BLOCK_M, BLOCK_N, num_stages, num_warps)
@triton.jit
def _fwd_kernel(
Q, K, V, B, sm_scale,
L, O,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vn, stride_vk,
stride_oz, stride_oh, stride_om, stride_ok,
stride_bz, stride_bh, stride_bm, stride_bn,
Z, H, M, N, P_SEQ,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
IS_CAUSAL: tl.constexpr, LARGER_M: tl.constexpr,
DIVISIBLE_M: tl.constexpr, DIVISIBLE_N: tl.constexpr,
HAS_BIAS: tl.constexpr,
):
input_dtype = Q.dtype.element_ty
# -- grid id --
start_m = tl.program_id(0)
off_h = tl.program_id(1)
off_z = tl.program_id(2)
# scale sm_scale by log_2(e) and use
# 2^x instead of exp in the loop because CSE and LICM
# don't work as expected with `exp` in the loop
log2e: tl.constexpr = 1.4426950408889634
# offset pointers for (batch, head)
Q += off_z * stride_qz + off_h * stride_qh
K += off_z * stride_kz + off_h * stride_kh
V += off_z * stride_vz + off_h * stride_vh
O += off_z * stride_oz + off_h * stride_oh
if HAS_BIAS:
B += off_z * stride_bz + off_h * stride_bh
L += (off_z * H + off_h) * M # l's shape is (B, H, M)
offs_m_base = tl.arange(0, BLOCK_M)
offs_m = start_m * BLOCK_M + offs_m_base
offs_n_base = tl.arange(0, BLOCK_N)
offs_k = tl.arange(0, BLOCK_DMODEL)
# initialize pointers to value-like data
q_ptrs = Q + (offs_m[:, None] * stride_qm + offs_k[None, :] * stride_qk) # (BLOCK_M, BLOCK_DMODEL)
o_ptrs = O + (offs_m[:, None] * stride_om + offs_k[None, :] * stride_ok) # (BLOCK_M, BLOCK_DMODEL)
l_ptrs = L + offs_m
# initialize pointer to m and l, fp32 for accumulators
m_i = tl.full([BLOCK_M], value=-float("inf"), dtype=tl.float32)
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# load q
mask_m = offs_m < M
if DIVISIBLE_M:
q = tl.load(q_ptrs, cache_modifier=".cg")
else:
q = tl.load(q_ptrs, mask=mask_m[:, None], cache_modifier=".cg")
#Dot I trick: to place q in registers, it saves shared memory
if BLOCK_DMODEL < 128:
I = tl.where(offs_k[:, None] == offs_k,
tl.full((BLOCK_DMODEL, BLOCK_DMODEL), 1.0, dtype=input_dtype),
tl.full((BLOCK_DMODEL, BLOCK_DMODEL), 0.0, dtype=input_dtype))
q = tl.dot(q, I).to(input_dtype)
# else:
# I = tl.where(offs_m_base[:, None] == offs_m_base,
# tl.full((BLOCK_M, BLOCK_M), 1.0, dtype=input_dtype),
# tl.full((BLOCK_M, BLOCK_M), 0.0, dtype=input_dtype))
# q = tl.dot(I, q).to(input_dtype)
# NOTE: Loop-Bound-For-N
# The indices in m-dimension that this block may access is in `[start_m * BLOCK_M, (start_m + 1) * BLOCK_M)`.
# According to the rule of causal masking, then max index in n-dimension that this block may access
# is `P_SEQ + (start_m + 1) * BLOCK_M`.
# However, the upper bound of index in n-dimension should never exceed the sequence length of k/v(`P_SEQ + N_CTX`).
# `P_SEQ + (start_m + 1) * BLOCK_M` may be larger than `N`.
# At this case, there would be illegal memory access when loading k & v tiles
# if mask_n is not applied for loading(only when `DIVISIBLE_N`` is true).
# See also https://github.com/FlagOpen/FlagAttention/pull/8
if IS_CAUSAL:
hi = tl.minimum(N, P_SEQ + (start_m + 1) * BLOCK_M)
if LARGER_M:
hi = tl.maximum(0, hi)
else:
hi = N
# loop over k, v and update accumulators
offs_n_init = offs_n_base
k_ptrs = K + (offs_k[:, None] * stride_vk + offs_n_init[None, :] * stride_vn) # (BLOCK_DMODEL, BLOCK_N)
v_ptrs = V + (offs_n_init[:, None] * stride_kn + offs_k[None, :] * stride_kk) # (BLOCK_N, BLOCK_DMODEL)
if HAS_BIAS:
bias_ptrs = B + (offs_m[:, None] * stride_bm + offs_n_init[None, :] * stride_bn) # (BLOCK_M, BLOCK_N)
for start_n in range(0, hi, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
offs_n = start_n + offs_n_base
# -- load k, v --
mask_n = offs_n < N
if DIVISIBLE_N:
k = tl.load(k_ptrs, cache_modifier=".cg")
v = tl.load(v_ptrs, cache_modifier=".cg")
else:
k = tl.load(k_ptrs, mask=mask_n[None, :], cache_modifier=".cg")
v = tl.load(v_ptrs, mask=mask_n[:, None], cache_modifier=".cg")
# -- load bias --
if HAS_BIAS:
if DIVISIBLE_M and DIVISIBLE_N:
b = tl.load(bias_ptrs)
else:
b = tl.load(bias_ptrs, mask_m[:, None] & mask_n[None, :])
# -- compute qk ---
s = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
s += tl.dot(q, k) * sm_scale
if HAS_BIAS:
s += b
if not DIVISIBLE_N:
s = tl.where(mask_n[None, :], s, float("-inf"))
if IS_CAUSAL:
causal_mask = (P_SEQ + offs_m[:, None]) >= offs_n[None, :]
s = tl.where(causal_mask, s, float("-inf"))
# -- compute scaling constant ---
m_i_new = tl.maximum(m_i, tl.max(s, 1))
alpha = tl.math.exp2((m_i - m_i_new)*log2e)
p = tl.math.exp2((s - m_i_new[:, None])*log2e)
# -- scale and update acc: acc *= alpha[:, None]--
acc *= alpha[:, None]
acc += tl.dot(p.to(input_dtype), v)
# -- update m_i and l_i --
l_i = l_i * alpha + tl.sum(p, 1)
m_i = m_i_new
# update pointers
k_ptrs += BLOCK_N * stride_kn
v_ptrs += BLOCK_N * stride_vn
if HAS_BIAS:
bias_ptrs += BLOCK_N * stride_bn
# write back l & o
if IS_CAUSAL and LARGER_M:
is_empty_line = (offs_m + P_SEQ) < 0
acc = tl.where(is_empty_line[:, None], 0.0, acc * (1.0 / l_i[:, None]))
l = tl.where(is_empty_line, float("-inf"), m_i + tl.log(l_i))
else:
acc = acc * (1.0 / l_i[:, None])
l = m_i + tl.log(l_i) # log(normalizer)
if DIVISIBLE_M:
tl.store(l_ptrs, l, cache_modifier=".cg")
tl.store(o_ptrs, acc.to(input_dtype), cache_modifier=".cg")
else:
tl.store(l_ptrs, l, mask=mask_m, cache_modifier=".cg")
tl.store(o_ptrs, acc.to(input_dtype), mask=mask_m[:, None], cache_modifier=".cg")
# --------------------------- Backward ---------------------------
# NOTE: this function can be overwritten at runtime to use your custom config
def get_bwd_config(B, H, M, N, D, causal):
if torch.cuda.get_device_capability() == (8, 0):
if not causal:
BLOCK_M = 128 if D <= 64 else 64
BLOCK_N = 64
num_stages = 2
num_warps = 4
else:
BLOCK_M = 64
BLOCK_N = 64
num_stages = 3 if D <= 64 else 2
num_warps = 4
elif torch.cuda.get_device_capability() == (8, 6): # tune for RTX-3090, device_capability(8, 6)
if not causal:
if D <= 64:
BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 2, 4
else:
BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 2, 8
else:
if D <= 64:
BLOCK_M, BLOCK_N, num_stages, num_warps = 64, 64, 2, 4
else:
BLOCK_M, BLOCK_N, num_stages, num_warps = 32, 32, 2, 4
else:
BLOCK_M, BLOCK_N, num_stages, num_warps = 32, 32, 1, 4
return (BLOCK_M, BLOCK_N, num_stages, num_warps)
@triton.jit
def _bwd_preprocess(
Out, DO,
Delta,
stride_oz, stride_oh, stride_om, stride_ok,
stride_doz, stride_doh, stride_dom, stride_dok,
stride_dz, stride_dh, stride_dm,
M,
BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr,
DIVISIBLE_M: tl.constexpr,
):
off_h = tl.program_id(1)
off_z = tl.program_id(2)
Out += off_z * stride_oz + off_h * stride_oh
DO += off_z * stride_doz + off_h * stride_doh
Delta += off_z * stride_dz + off_h * stride_dh
# compute (Out * Dout).sum() for vector interpretation
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
off_n = tl.arange(0, D_HEAD)
# load
o_ptrs = Out + off_m[:, None] * stride_om + off_n[None, :] * stride_ok
do_ptrs = DO + off_m[:, None] * stride_dom + off_n[None, :] * stride_dok
if DIVISIBLE_M:
o = tl.load(o_ptrs).to(tl.float32)
do = tl.load(do_ptrs).to(tl.float32)
else:
mask_m = off_m < M
o = tl.load(o_ptrs, mask=mask_m[:, None]).to(tl.float32)
do = tl.load(do_ptrs, mask=mask_m[:, None]).to(tl.float32)
# compute
delta = tl.sum(o * do, axis=1)
# write-back
d_ptrs = Delta + off_m * stride_dm
if DIVISIBLE_M:
tl.store(d_ptrs, delta)
else:
tl.store(d_ptrs, delta, mask=mask_m)
@triton.jit
def _bwd_kv_kernel(
Q, K, V, B, sm_scale, DO,
DK, DV, DS,
L,
D,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vn, stride_vk,
stride_bz, stride_bh, stride_bm, stride_bn,
stride_doz, stride_doh, stride_dom, stride_dok,
stride_dkz, stride_dkh, stride_dkn, stride_dkk,
stride_dvz, stride_dvh, stride_dvn, stride_dvk,
Z, H, M, N, P_SEQ,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
CAUSAL: tl.constexpr,
DIVISIBLE_M: tl.constexpr, DIVISIBLE_N: tl.constexpr,
HAS_BIAS: tl.constexpr,
RETURN_DS: tl.constexpr, USE_DS_ATOMIC_ADD: tl.constexpr,
):
input_dtype = Q.dtype.element_ty
# -- grid id --
start_n = tl.program_id(0)
off_h = tl.program_id(1)
off_z = tl.program_id(2)
log2e: tl.constexpr = 1.4426950408889634
qk_scale = sm_scale * log2e
# offset pointers for (batch, head)
Q += off_z * stride_qz + off_h * stride_qh
K += off_z * stride_kz + off_h * stride_kh
V += off_z * stride_vz + off_h * stride_vh
if HAS_BIAS:
B += off_z * stride_bz + off_h * stride_bh
DO += off_z * stride_doz + off_h * stride_doh
# offset pointers for batch/head
DK += off_z * stride_dkz + off_h * stride_dkh
DV += off_z * stride_dvz + off_h * stride_dvh
if RETURN_DS:
DS += off_z * stride_bz + off_h * stride_bh
# offset pointers for batch/head
D += (off_z * H + off_h) * M
L += (off_z * H + off_h) * M
if CAUSAL:
lo = tl.maximum(start_n * BLOCK_N - P_SEQ, 0)
lo = (lo // BLOCK_M) * BLOCK_M
else:
lo = 0
offs_m_init = lo + tl.arange(0, BLOCK_M)
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
offs_m_base = tl.arange(0, BLOCK_M)
offs_k = tl.arange(0, BLOCK_DMODEL)
# initialize pointers to value-like data
q_ptrs = Q + (offs_m_init[:, None] * stride_qm + offs_k[None, :] * stride_qk) # (BLOCK_M, BLOCK_DMODEL)
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) # (BLOCK_N, BLOCK_DMODEL)
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_k[None, :] * stride_vk) # (BLOCK_N, BLOCK_DMODEL)
do_ptrs = DO + (offs_m_init[:, None] * stride_dom + offs_k[None, :] * stride_dok) # (BLOCK_M, BLOCK_DMODEL)
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_k[None, :] * stride_dvk) # (BLOCK_N, BLOCK_DMODEL)
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_k[None, :] * stride_dkk) # (BLOCK_N, BLOCK_DMODEL)
if HAS_BIAS:
bias_ptrs = B + (offs_m_init[:, None] * stride_bm + offs_n[None, :] * stride_bn)
if RETURN_DS:
ds_ptrs = DS + (offs_m_init[:, None] * stride_bm + offs_n[None, :] * stride_bn)
# k and v stay in SRAM throughout
mask_n = offs_n < N
if DIVISIBLE_N:
v = tl.load(v_ptrs)
k = tl.load(k_ptrs)
else:
v = tl.load(v_ptrs, mask=mask_n[:, None])
k = tl.load(k_ptrs, mask=mask_n[:, None])
# initialize dk amd dv
dk = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
dv = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
# loop over a col
for start_m in range(lo, M, BLOCK_M):
start_m = tl.multiple_of(start_m, BLOCK_M)
offs_m = start_m + offs_m_base
causal_mask = (P_SEQ + offs_m[:, None]) >= (offs_n[None, :]) # (BLOCK_M, BLOCK_N)
# load q1, k1, q2, k2, v, do on-chip
mask_m = offs_m < M
if DIVISIBLE_M:
q = tl.load(q_ptrs)
else:
valid_mask = mask_m[:, None] # & mask_n
q = tl.load(q_ptrs, mask=mask_m[:, None])
# load bias
if HAS_BIAS:
if DIVISIBLE_M and DIVISIBLE_N:
b = tl.load(bias_ptrs)
else:
b = tl.load(bias_ptrs, mask=mask_m[:, None] & mask_n[None, :])
# recompute p = softmax(qk * sm_scale, dim=-1)
s = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
s += tl.dot(q, tl.trans(k)) * sm_scale
if HAS_BIAS:
s += b
# NOTE: since softmax in backward is pointwise, the normalizer has been saved in fwd)
# So masking on s is not needed.
# s = tl.where(valid_mask, s , float("-inf"))
# if CAUSAL:
# s = tl.where(causal_mask, s, float("-inf"))
# -- recompute p ---
if DIVISIBLE_M:
l = tl.load(L + offs_m)
else:
l = tl.load(L + offs_m, mask=mask_m)
p = tl.math.exp2((s - l[:, None])*log2e) # (BLOCK_M, BLOCK_N)
if not DIVISIBLE_M:
p = tl.where(valid_mask, p, 0.0)
if CAUSAL:
p = tl.where(causal_mask, p, 0.0)
# compute dv = dot(p, do)
if DIVISIBLE_M:
do = tl.load(do_ptrs)
else:
do = tl.load(do_ptrs, mask=mask_m[:, None]) # (BLOCK_M, BLOCK_DMODEL)
dv += tl.dot(tl.trans(p.to(do.dtype)), do) # (BLOCK_N, BLOCK_DMODEL) # still correct
# compute dp = dot(v, do)
if DIVISIBLE_M:
delta = tl.load(D + offs_m)
else:
delta = tl.load(D + offs_m, mask=mask_m)
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
dp += tl.dot(do, tl.trans(v))
# compute ds = p * (dp - delta[:, None])
ds = p * (dp - delta[:, None]) # (BLOCK_M, BLOCK_N)
if not DIVISIBLE_M:
ds = tl.where(valid_mask, ds, 0.0)
if CAUSAL:
ds = tl.where(causal_mask, ds, 0.0)
ds = ds.to(input_dtype)
if RETURN_DS:
if DIVISIBLE_M and DIVISIBLE_N:
if USE_DS_ATOMIC_ADD:
tl.atomic_add(ds_ptrs, ds)
else:
tl.store(ds_ptrs, ds)
else:
if USE_DS_ATOMIC_ADD:
tl.atomic_add(ds_ptrs, ds, mask=mask_m[:, None] & mask_n[None, :])
else:
tl.store(ds_ptrs, ds, mask=mask_m[:, None] & mask_n[None, :])
# compute dk = dot(ds.T, q) masking
dk += tl.dot(tl.trans(ds), q)
# increment pointers
q_ptrs += BLOCK_M * stride_qm
do_ptrs += BLOCK_M * stride_dom
if HAS_BIAS:
bias_ptrs += BLOCK_M * stride_bm
if RETURN_DS:
ds_ptrs += BLOCK_M * stride_bm
dk *= sm_scale
if DIVISIBLE_N:
tl.store(dk_ptrs, dk.to(input_dtype)) # (BLOCK_N, BLOCK_DMODEL)
tl.store(dv_ptrs, dv.to(input_dtype)) # (BLOCK_N, BLOCK_DMODEL,)
else:
tl.store(dk_ptrs, dk.to(input_dtype), mask=mask_n[:, None]) # (BLOCK_N, BLOCK_DMODEL)
tl.store(dv_ptrs, dv.to(input_dtype), mask=mask_n[:, None]) # (BLOCK_N, BLOCK_DMODEL,)
@triton.jit
def _bwd_q_kernel(
Q, K, V, B, sm_scale, DO,
DQ,
L,
D,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vn, stride_vk,
stride_bz, stride_bh, stride_bm, stride_bn,
stride_doz, stride_doh, stride_dom, stride_dok,
stride_dqz, stride_dqh, stride_dqm, stride_dqk,
Z, H, M, N, P_SEQ,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
CAUSAL: tl.constexpr, LARGER_M: tl.constexpr,
DIVISIBLE_M: tl.constexpr, DIVISIBLE_N: tl.constexpr,
HAS_BIAS: tl.constexpr
):
input_dtype = Q.dtype.element_ty
# -- grid id --
start_m = tl.program_id(0)
off_h = tl.program_id(1)
off_z = tl.program_id(2)
# scale sm_scale by log_2(e) and use
# 2^x instead of exp in the loop because CSE and LICM
# don't work as expected with `exp` in the loop
log2e: tl.constexpr = 1.4426950408889634
# offset pointers for (batch, head)
Q += off_z * stride_qz + off_h * stride_qh
K += off_z * stride_kz + off_h * stride_kh
V += off_z * stride_vz + off_h * stride_vh
if HAS_BIAS:
B += off_z * stride_bz + off_h * stride_bh
DO += off_z * stride_doz + off_h * stride_doh
D += (off_z * H + off_h) * M
L += (off_z * H + off_h) * M
# offset pointers for batch/head
DQ += off_z * stride_dqz + off_h * stride_dqh
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n_base = tl.arange(0, BLOCK_N)
offs_n_init = offs_n_base
offs_k = tl.arange(0, BLOCK_DMODEL)
# initialize pointers to value-like data
q_ptrs = Q + (offs_m[:, None] * stride_qm + offs_k[None, :] * stride_qk) # (BLOCK_M, BLOCK_DMODEL)
k_ptrs = K + (offs_n_init[:, None] * stride_kn + offs_k[None, :] * stride_kk) # (BLOCK_N, BLOCK_DMODEL)
v_ptrs = V + (offs_n_init[:, None] * stride_vn + offs_k[None, :] * stride_vk) # (BLOCK_N, BLOCK_DMODEL)
if HAS_BIAS:
bias_ptrs = B + (offs_m[:, None] * stride_bm + offs_n_init[None, :] * stride_bn)
dq_ptrs = DQ + (offs_m[:, None] * stride_dqm + offs_k[None, :] * stride_dqk) # (BLOCK_M, BLOCK_DMODEL)
do_ptrs = DO + (offs_m[:, None] * stride_dom + offs_k[None, :] * stride_dok) # (BLOCK_M, BLOCK_DMODEL)
# pointer to row-wise quantities in value-like data
d_ptrs = D + offs_m
l_ptrs = L + offs_m
# load q: it will stay in SRAM throughout
mask_m = offs_m < M
if DIVISIBLE_M:
q = tl.load(q_ptrs)
do = tl.load(do_ptrs)
delta = tl.load(d_ptrs)
l = tl.load(l_ptrs)
else:
q = tl.load(q_ptrs, mask=mask_m[:, None])
do = tl.load(do_ptrs, mask=mask_m[:, None])
delta = tl.load(d_ptrs, mask=mask_m)
l = tl.load(l_ptrs, mask=mask_m)
# initialize dq
dq = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# loop over k, v and update accumulator
# see note "Loop-Bound-For-N"
if CAUSAL:
hi = tl.minimum(N, P_SEQ + (start_m + 1) * BLOCK_M)
if LARGER_M:
hi = tl.maximum(0, hi)
else:
hi = N
# loop over a row
for start_n in range(0, hi, BLOCK_N):
offs_n = start_n + offs_n_base
# load k1, k2, v on chip
mask_n = offs_n < N
if DIVISIBLE_N:
v = tl.load(v_ptrs)
k = tl.load(k_ptrs)
else:
v = tl.load(v_ptrs, mask=mask_n[:, None])
k = tl.load(k_ptrs, mask=mask_n[:, None])
# load bias
if HAS_BIAS:
if DIVISIBLE_M and DIVISIBLE_N:
b = tl.load(bias_ptrs)
else:
b = tl.load(bias_ptrs, mask=mask_m[:, None] & mask_n[None, :])
# recompute p = softmax(qk * sm_scale, dim=-1)
if not DIVISIBLE_N:
valid_mask = mask_n # & mask_m[:, None]
if CAUSAL:
causal_mask = (P_SEQ + offs_m[:, None]) >= (offs_n[None, :]) # (BLOCK_M, BLOCK_N)
s = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
s += tl.dot(q, tl.trans(k)) * sm_scale
if HAS_BIAS:
s += b
# NOTE: since softmax in backward is pointwise, the normalizer has been saved in fwd)
# So masking on s is not needed.
# if CAUSAL:
# s = tl.where(causal_mask & valid_mask, s, float("-inf"))
# else:
# s = tl.where(valid_mask, s, float("-inf"))
p = tl.math.exp2((s - l[:, None])*log2e) # (BLOCK_M, BLOCK_N)
# compute dp = dot(v, do)
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
dp += tl.dot(do.to(input_dtype), tl.trans(v))
# no need to mask dp
# if CAUSAL:
# dp = tl.where(causal_mask & valid_mask, dp, 0.0)
# else:
# dp = tl.where(valid_mask, dp, 0.0)
# compute ds = p * (dp - delta[:, None])
# move scale out to dq at last
ds = p * (dp - delta[:, None]) # (BLOCK_M, BLOCK_N)
# mask ds to ensure no small values
if not DIVISIBLE_N:
ds = tl.where(valid_mask, ds, 0.0)
if CAUSAL:
ds = tl.where(causal_mask, ds, 0.0)
dq += tl.dot(ds.to(input_dtype), k)
# increment pointers
k_ptrs += BLOCK_N * stride_kn
v_ptrs += BLOCK_N * stride_vn
if HAS_BIAS:
bias_ptrs += BLOCK_N * stride_bn
dq *= sm_scale
if DIVISIBLE_M:
tl.store(dq_ptrs, dq.to(input_dtype))
else:
tl.store(dq_ptrs, dq.to(input_dtype), mask=mask_m[:, None])