File size: 6,949 Bytes
f34d950
e3dec24
f34d950
 
 
e3dec24
f34d950
 
 
 
 
 
 
 
 
 
6c840eb
 
f34d950
 
 
 
 
 
 
 
 
 
 
 
e3dec24
 
 
 
 
 
f34d950
 
e3dec24
 
 
 
 
 
f34d950
 
 
 
 
 
 
 
 
 
 
 
 
 
e3dec24
f34d950
 
 
 
 
 
 
 
 
 
6c840eb
f34d950
 
 
 
 
 
 
 
 
 
 
 
 
6c840eb
f34d950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c840eb
f34d950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c840eb
f34d950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c840eb
f34d950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
license: apache-2.0
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
  - OpenGVLab/InternVL2.5-1B
base_model_relation: merge
language:
  - multilingual
tags:
  - Sa2VA
  - custom_code
---

# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos

[\[πŸ“‚ GitHub\]](https://github.com/magic-research/Sa2VA)
[\[πŸ“œ Sa2VA paper\]](https://arxiv.org/abs/2501.04001)
[\[πŸš€ Quick Start\]](#quick-start) 



## Introduction

Sa2VA is an MLLM capable of question answering, visual prompt understanding, and dense object segmentation at both image and video levels. It achieves comparable performance to SOTA MLLMs Qwen2-VL and InternVL2.5 on question-answering benchmarks. Additionally, Sa2VA possesses the visual prompt understanding and dense object segmentation capabilities that SOTA MLLMs Qwen2-VL and InternVL2.5 lack. Sa2VA achieves SOTA performance on both image and video grounding and segmentation benchmarks.

## Sa2VA Family

We built the Sa2VA series based on Qwen2-VL and InternVL2/2.5. In the following table, we provide some Sa2VA models built on InternVL2.5. Other Sa2VA models will be open-sourced soon.

| Model Name |                             Base MLLM                              |                                Language Part                                |                        HF Link                        |
|:----------:|:------------------------------------------------------------------:|:---------------------------------------------------------------------------:|:-----------------------------------------------------:|
|  Sa2VA-1B  | [InternVL2.5-1B](https://huggingface.co/OpenGVLab/InternVL2_5-1B)  | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct)  | [πŸ€— link](https://huggingface.co/ByteDance/Sa2VA-1B)  |
|  Sa2VA-4B  | [InternVL2.5-4B](https://huggingface.co/OpenGVLab/InternVL2_5-4B)  |   [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)    | [πŸ€— link](https://huggingface.co/ByteDance/Sa2VA-4B)  |
|  Sa2VA-8B  | [InternVL2.5-8B](https://huggingface.co/OpenGVLab/InternVL2_5-8B)  | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat)  | [πŸ€— link](https://huggingface.co/ByteDance/Sa2VA-8B)  |
| Sa2VA-26B  | [InternVL2.5-26B](https://huggingface.co/OpenGVLab/InternVL2_5-26B) | [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat) | [πŸ€— link](https://huggingface.co/ByteDance/Sa2VA-26B) |

## Sa2VA Performance
| Model Name |   MME    | MMBench  | RefCOCO | RefCOCO+ | RefCOCOg | MeVIS (val_u) | DAVIS |
|:----------:|:--------:|:----:|:-------:|:--------:|:--------:|:-------------:|:-----:|
|  Sa2VA-1B  | 1504/434 | 71.9 |  79.6   |   73.6   |   77.7   |     53.4      | 69.5  |
|  Sa2VA-4B  | 1691/610 | 81.8 |  82.4   |   77.6   |   79.7   |     55.9      | 73.7  |
|  Sa2VA-8B  | 1690/610 | 84.4 |  82.6   |   78.0   |   80.3   |     58.9      | 75.9  |
| Sa2VA-26B | 1698/653 | 85.8 |  82.9   |   79.3   |   81.2   |     61.8      | 78.6  |


## Quick Start

We provide an example code to run `Sa2VA` using `transformers`.

```python
import torch
from transformers import AutoTokenizer, AutoModel
from PIL import Image
import numpy as np
import os

# load the model and tokenizer
path = "ByteDance/Sa2VA-1B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

# for image chat
image_path = "/PATH/TO/IMAGE"
text_prompts = "<image>Please describe the image."
image = Image.open(image_path).convert('RGB')
input_dict = {
    'image': image,
    'text': text_prompts,
    'past_text': '',
    'mask_prompts': None,
    'tokenizer': tokenizer,
    }
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer

# for image chat with segmentation output
image_path = "/PATH/TO/IMAGE"
text_prompts = "<image>Could you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer."
image = Image.open(image_path).convert('RGB')
input_dict = {
    'image': image,
    'text': text_prompts,
    'past_text': '',
    'mask_prompts': None,
    'tokenizer': tokenizer,
    }
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer
masks = return_dict['prediction_masks']  # segmentation masks, list(np.array(1, h, w), ...)
    
# for chat with visual prompt (mask format) input
mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
image_path = "/PATH/TO/IMAGE"
text_prompts = "<image>Can you provide me with a detailed description of the region in the picture marked by region1."
image = Image.open(image_path).convert('RGB')
input_dict = {
    'image': image,
    'text': text_prompts,
    'past_text': '',
    'mask_prompts': mask_prompts,
    'tokenizer': tokenizer,
    }
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer

# for video chat
video_folder = "/PATH/TO/VIDEO_FOLDER"
images_paths = os.listdir(video_folder)
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
if len(images_paths) > 5:  # uniformly sample 5 frames
    step = (len(images_paths) - 1) // (5 - 1)
    images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
text_prompts = "<image>Please describe the video."
input_dict = {
    'video': images_paths,
    'text': text_prompts,
    'past_text': '',
    'mask_prompts': None,
    'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer


# for video chat with segmentation mask output
video_folder = "/PATH/TO/VIDEO_FOLDER"
images_paths = os.listdir(video_folder)
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
text_prompts = "<image>Please segment the person."
input_dict = {
    'video': images_paths,
    'text': text_prompts,
    'past_text': '',
    'mask_prompts': None,
    'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer
masks = return_dict['prediction_masks']  # segmentation masks, list(np.array(n_frames, h, w), ...)
```

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{sa2va,
  title={Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos},
  author={Yuan, Haobo and Li, Xiangtai and Zhang, Tao and Huang, Zilong Huang and Xu, Shilin and Ji, Shunping and Tong, Yunhai and Qi, Lu and Feng, Jiashi and Yang, Ming-Hsuan},
  journal={arXiv preprint},
  year={2025}
}
```