Róger Nascimento Santos
commited on
Commit
·
82f69a2
1
Parent(s):
b7922e4
Upload 4 files
Browse filesadapter model (LoRA)
- adapter_config.json +23 -0
- adapter_model.bin +3 -0
- inference-cabra-kaggle.ipynb +0 -0
- qLora-Training-Cabra - Paperspace.ipynb +809 -0
adapter_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "openlm-research/open_llama_3b_v2",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16,
|
12 |
+
"lora_dropout": 0.05,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"q_proj",
|
20 |
+
"v_proj"
|
21 |
+
],
|
22 |
+
"task_type": "CAUSAL_LM"
|
23 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d68e85dfb62b16ac694dfb355f93b4bf0958f069735603080378b9ca4c6da9b
|
3 |
+
size 10686701
|
inference-cabra-kaggle.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
qLora-Training-Cabra - Paperspace.ipynb
ADDED
@@ -0,0 +1,809 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "UQF7nAH1syz4"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"Based on [alpaca lora](https://github.com/tloen/alpaca-lora/blob/main/finetune.py)."
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {
|
16 |
+
"execution": {
|
17 |
+
"iopub.execute_input": "2023-07-18T11:49:03.267959Z",
|
18 |
+
"iopub.status.busy": "2023-07-18T11:49:03.267686Z",
|
19 |
+
"iopub.status.idle": "2023-07-18T11:51:38.082879Z",
|
20 |
+
"shell.execute_reply": "2023-07-18T11:51:38.082079Z",
|
21 |
+
"shell.execute_reply.started": "2023-07-18T11:49:03.267936Z"
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"# !apt update\n",
|
27 |
+
"# !apt upgrade -y cuda-nvcc-12-0"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": null,
|
33 |
+
"metadata": {
|
34 |
+
"execution": {
|
35 |
+
"iopub.execute_input": "2023-07-18T11:51:38.084514Z",
|
36 |
+
"iopub.status.busy": "2023-07-18T11:51:38.084291Z",
|
37 |
+
"iopub.status.idle": "2023-07-18T11:51:40.683284Z",
|
38 |
+
"shell.execute_reply": "2023-07-18T11:51:40.682579Z",
|
39 |
+
"shell.execute_reply.started": "2023-07-18T11:51:38.084488Z"
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"import torch\n",
|
45 |
+
"print(\"Torch Version: \" + torch.__version__ + \"\\n\")\n",
|
46 |
+
"\n",
|
47 |
+
"# !nvcc --version\n",
|
48 |
+
"\n",
|
49 |
+
"# !nvidia-smi"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"metadata": {
|
56 |
+
"colab": {
|
57 |
+
"base_uri": "https://localhost:8080/"
|
58 |
+
},
|
59 |
+
"execution": {
|
60 |
+
"iopub.execute_input": "2023-07-18T11:51:40.684754Z",
|
61 |
+
"iopub.status.busy": "2023-07-18T11:51:40.684408Z",
|
62 |
+
"iopub.status.idle": "2023-07-18T11:55:27.915935Z",
|
63 |
+
"shell.execute_reply": "2023-07-18T11:55:27.915414Z",
|
64 |
+
"shell.execute_reply.started": "2023-07-18T11:51:40.684734Z"
|
65 |
+
},
|
66 |
+
"id": "RXurA0q5jtaf",
|
67 |
+
"outputId": "93942094-5399-4f21-9660-fbfd344598ee"
|
68 |
+
},
|
69 |
+
"outputs": [],
|
70 |
+
"source": [
|
71 |
+
"# !pip install -U cuda-python\n",
|
72 |
+
"# !pip3 install -U torch torchvision torchaudio #--index-url https://download.pytorch.org/whl/cu118\n",
|
73 |
+
"\n",
|
74 |
+
"# # Paperspace\n",
|
75 |
+
"# !git clone https://github.com/timdettmers/bitsandbytes.git\n",
|
76 |
+
"# !cd bitsandbytes && CUDA_VERSION=116 make cuda11x && python setup.py install\n",
|
77 |
+
"# !cp /notebooks/bitsandbytes/bitsandbytes/libbitsandbytes_cuda116.so /usr/lib/python3.9/\n",
|
78 |
+
"# !pip install -U bitsandbytes\n",
|
79 |
+
"\n",
|
80 |
+
"# # Google Colab\n",
|
81 |
+
"# #!pip install -U git+https://github.com/TimDettmers/bitsandbytes\n",
|
82 |
+
"\n",
|
83 |
+
"# !pip install -U git+https://github.com/huggingface/transformers.git\n",
|
84 |
+
"# !pip install -U git+https://github.com/huggingface/peft.git\n",
|
85 |
+
"# !pip install -U datasets accelerate"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": null,
|
91 |
+
"metadata": {
|
92 |
+
"execution": {
|
93 |
+
"iopub.execute_input": "2023-07-18T01:41:01.400102Z",
|
94 |
+
"iopub.status.busy": "2023-07-18T01:41:01.399691Z",
|
95 |
+
"iopub.status.idle": "2023-07-18T01:41:10.921838Z",
|
96 |
+
"shell.execute_reply": "2023-07-18T01:41:10.920427Z",
|
97 |
+
"shell.execute_reply.started": "2023-07-18T01:41:01.400069Z"
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"#!find / -name bitsandbytes\n",
|
103 |
+
"\n",
|
104 |
+
"#!find / -name libbitsandbytes_cuda116.so\n",
|
105 |
+
"\n",
|
106 |
+
"#!cp /notebooks/bitsandbytes/bitsandbytes/libbitsandbytes_cuda116.so /usr/lib/python3.9/\n",
|
107 |
+
"\n",
|
108 |
+
"#!ls /usr/lib/python3.9/\n",
|
109 |
+
"\n",
|
110 |
+
"#!python -m bitsandbytes"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": null,
|
116 |
+
"metadata": {
|
117 |
+
"colab": {
|
118 |
+
"base_uri": "https://localhost:8080/"
|
119 |
+
},
|
120 |
+
"execution": {
|
121 |
+
"iopub.execute_input": "2023-07-18T11:55:56.450496Z",
|
122 |
+
"iopub.status.busy": "2023-07-18T11:55:56.449938Z",
|
123 |
+
"iopub.status.idle": "2023-07-18T11:56:04.138278Z",
|
124 |
+
"shell.execute_reply": "2023-07-18T11:56:04.137468Z",
|
125 |
+
"shell.execute_reply.started": "2023-07-18T11:55:56.450472Z"
|
126 |
+
},
|
127 |
+
"id": "fhmLLJD0lM5S",
|
128 |
+
"outputId": "d1ef4a8d-156c-4e0c-b92c-2d499e8ad4ed"
|
129 |
+
},
|
130 |
+
"outputs": [],
|
131 |
+
"source": [
|
132 |
+
"import os\n",
|
133 |
+
"\n",
|
134 |
+
"# To choose a specific GPU:\n",
|
135 |
+
"# os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"\n",
|
136 |
+
"\n",
|
137 |
+
"import torch\n",
|
138 |
+
"import torch.nn as nn\n",
|
139 |
+
"import bitsandbytes as bnb\n",
|
140 |
+
"from datasets import load_dataset\n",
|
141 |
+
"import transformers\n",
|
142 |
+
"from transformers import AutoTokenizer, AutoConfig, LlamaForCausalLM, LlamaTokenizer, AutoModelForCausalLM\n",
|
143 |
+
"from peft import prepare_model_for_kbit_training, prepare_model_for_int8_training, LoraConfig, get_peft_model\n",
|
144 |
+
"from peft.peft_model import PeftModel\n"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": null,
|
150 |
+
"metadata": {
|
151 |
+
"execution": {
|
152 |
+
"iopub.execute_input": "2023-07-18T11:56:06.901323Z",
|
153 |
+
"iopub.status.busy": "2023-07-18T11:56:06.900588Z",
|
154 |
+
"iopub.status.idle": "2023-07-18T11:56:06.904953Z",
|
155 |
+
"shell.execute_reply": "2023-07-18T11:56:06.904367Z",
|
156 |
+
"shell.execute_reply.started": "2023-07-18T11:56:06.901289Z"
|
157 |
+
},
|
158 |
+
"id": "XnTp0gOUlOCU"
|
159 |
+
},
|
160 |
+
"outputs": [],
|
161 |
+
"source": [
|
162 |
+
"MICRO_BATCH_SIZE = 6 # this could actually be 5 but i like powers of 2\n",
|
163 |
+
"BATCH_SIZE = 128\n",
|
164 |
+
"GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE\n",
|
165 |
+
"EPOCHS = 2\n",
|
166 |
+
"LEARNING_RATE = 3e-4 # the Karpathy constant\n",
|
167 |
+
"CUTOFF_LEN = 256\n",
|
168 |
+
"LORA_R = 8\n",
|
169 |
+
"LORA_ALPHA = 16\n",
|
170 |
+
"LORA_DROPOUT = 0.05"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": null,
|
176 |
+
"metadata": {
|
177 |
+
"colab": {
|
178 |
+
"base_uri": "https://localhost:8080/",
|
179 |
+
"height": 49,
|
180 |
+
"referenced_widgets": [
|
181 |
+
"f3fb12d97dee43aaa51784182caed544",
|
182 |
+
"03717756681149898e8c3d40cbc16d10",
|
183 |
+
"d718c5abc21b4394a4314fdc289d830d",
|
184 |
+
"ee8532b0710541abb5f208e654b6d55a",
|
185 |
+
"af52a9b6412e46c6b82acb9afabd12d9",
|
186 |
+
"109d32c6d765417daf49b425b7ccee68",
|
187 |
+
"56217a5954624e6f8742ba914183cb9e",
|
188 |
+
"42a0b19d55b24e4ea5ce7894e4b8df50",
|
189 |
+
"4348c4efdd4d4deb945bb2838c24cd83",
|
190 |
+
"8f860f6f760e49b889fc450c53e49ac5",
|
191 |
+
"43c5c35af8f44f1f98def57ea60a9615"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
"execution": {
|
195 |
+
"iopub.execute_input": "2023-07-18T11:56:08.096435Z",
|
196 |
+
"iopub.status.busy": "2023-07-18T11:56:08.095783Z",
|
197 |
+
"iopub.status.idle": "2023-07-18T12:05:29.403294Z",
|
198 |
+
"shell.execute_reply": "2023-07-18T12:05:29.402714Z",
|
199 |
+
"shell.execute_reply.started": "2023-07-18T11:56:08.096410Z"
|
200 |
+
},
|
201 |
+
"id": "vdQfvhHo0afo",
|
202 |
+
"outputId": "71768c73-92d7-4430-cd75-3b262d86fc9b"
|
203 |
+
},
|
204 |
+
"outputs": [],
|
205 |
+
"source": [
|
206 |
+
"from huggingface_hub import snapshot_download\n",
|
207 |
+
"\n",
|
208 |
+
"model = '''openlm-research/open_llama_3b_v2'''\n",
|
209 |
+
"\"\"\"VMware/open-llama-13b-open-instruct\"\"\"\n",
|
210 |
+
"use_fast_tokenizer=False\n",
|
211 |
+
"# snapshot_download(repo_id=model)\n",
|
212 |
+
"\n",
|
213 |
+
"# LlamaTokenizer, is faster, if model is Llama\n",
|
214 |
+
"# tokenizer = LlamaTokenizer.from_pretrained(model, use_fast=use_fast_tokenizer)\n",
|
215 |
+
"# For other models:\n",
|
216 |
+
"tokenizer = AutoTokenizer.from_pretrained(model, use_fast=use_fast_tokenizer)\n",
|
217 |
+
"\n",
|
218 |
+
"# model = LlamaForCausalLM.from_pretrained(model, load_in_8bit=True, low_cpu_mem_usage=True, device_map='auto', torch_dtype=torch.float16)\n",
|
219 |
+
"# For other models:\n",
|
220 |
+
"model = AutoModelForCausalLM.from_pretrained(model, load_in_8bit=True, low_cpu_mem_usage=True, device_map='auto', torch_dtype=torch.float16)"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": null,
|
226 |
+
"metadata": {
|
227 |
+
"execution": {
|
228 |
+
"iopub.execute_input": "2023-07-18T12:05:29.404911Z",
|
229 |
+
"iopub.status.busy": "2023-07-18T12:05:29.404341Z",
|
230 |
+
"iopub.status.idle": "2023-07-18T12:05:43.916286Z",
|
231 |
+
"shell.execute_reply": "2023-07-18T12:05:43.915849Z",
|
232 |
+
"shell.execute_reply.started": "2023-07-18T12:05:29.404890Z"
|
233 |
+
},
|
234 |
+
"id": "Xkb9pQTflS-b"
|
235 |
+
},
|
236 |
+
"outputs": [],
|
237 |
+
"source": [
|
238 |
+
"model = prepare_model_for_int8_training(model)\n",
|
239 |
+
"\n",
|
240 |
+
"config = LoraConfig(\n",
|
241 |
+
" r=LORA_R,\n",
|
242 |
+
" lora_alpha=LORA_ALPHA,\n",
|
243 |
+
" target_modules=[\"q_proj\", \"v_proj\"],\n",
|
244 |
+
" lora_dropout=LORA_DROPOUT,\n",
|
245 |
+
" bias=\"none\",\n",
|
246 |
+
" task_type=\"CAUSAL_LM\",\n",
|
247 |
+
")\n",
|
248 |
+
"model = get_peft_model(model, config)\n",
|
249 |
+
"# model = PeftModel.from_pretrained(model, \"open-llama-3bv2-lora-cabra-adapter-120steps\", config=config)\n",
|
250 |
+
"tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token\n",
|
251 |
+
"data = load_dataset(\"json\", data_files=\"https://huggingface.co/datasets/Gustrd/dolly-15k-libretranslate-pt/resolve/main/dolly-15k-libretranslate-pt.json\")"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"cell_type": "code",
|
256 |
+
"execution_count": null,
|
257 |
+
"metadata": {
|
258 |
+
"execution": {
|
259 |
+
"iopub.execute_input": "2023-07-18T12:05:43.917470Z",
|
260 |
+
"iopub.status.busy": "2023-07-18T12:05:43.916924Z",
|
261 |
+
"iopub.status.idle": "2023-07-18T12:05:43.929680Z",
|
262 |
+
"shell.execute_reply": "2023-07-18T12:05:43.929220Z",
|
263 |
+
"shell.execute_reply.started": "2023-07-18T12:05:43.917450Z"
|
264 |
+
},
|
265 |
+
"id": "ad0PFPPmFRMv"
|
266 |
+
},
|
267 |
+
"outputs": [],
|
268 |
+
"source": [
|
269 |
+
"import math\n",
|
270 |
+
"\n",
|
271 |
+
"# Create a slice of the dataset to handle time constraints\n",
|
272 |
+
"# Calculate the number of rows to select for 1/2 of the data\n",
|
273 |
+
"dataSliceNumber = 1\n",
|
274 |
+
"num_rows = math.ceil(len(data['train']) // (1/dataSliceNumber))\n",
|
275 |
+
"data['train'] = data['train'].shuffle().select(range(num_rows))"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "code",
|
280 |
+
"execution_count": null,
|
281 |
+
"metadata": {
|
282 |
+
"execution": {
|
283 |
+
"iopub.execute_input": "2023-07-18T12:05:43.931063Z",
|
284 |
+
"iopub.status.busy": "2023-07-18T12:05:43.930761Z",
|
285 |
+
"iopub.status.idle": "2023-07-18T12:05:43.935033Z",
|
286 |
+
"shell.execute_reply": "2023-07-18T12:05:43.934613Z",
|
287 |
+
"shell.execute_reply.started": "2023-07-18T12:05:43.931044Z"
|
288 |
+
},
|
289 |
+
"id": "_VCfL3BhlV_x"
|
290 |
+
},
|
291 |
+
"outputs": [],
|
292 |
+
"source": [
|
293 |
+
"def generate_prompt(data_point):\n",
|
294 |
+
" # desculpe o desastre de formatação, preciso ser rápido\n",
|
295 |
+
" if data_point[\"context\"]:\n",
|
296 |
+
" return f\"\"\"Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.\n",
|
297 |
+
"### Instrução:\n",
|
298 |
+
"{data_point[\"instruction\"]}\n",
|
299 |
+
"### Entrada:\n",
|
300 |
+
"{data_point[\"context\"]}\n",
|
301 |
+
"### Resposta:\n",
|
302 |
+
"{data_point[\"response\"]}\"\"\"\n",
|
303 |
+
" else:\n",
|
304 |
+
" return f\"\"\"Abaixo está uma instrução que descreve uma tarefa. Escreva uma resposta que complete adequadamente o pedido.\n",
|
305 |
+
"### Instrução:\n",
|
306 |
+
"{data_point[\"instruction\"]}\n",
|
307 |
+
"### Resposta:\n",
|
308 |
+
"{data_point[\"response\"]}\"\"\"\n",
|
309 |
+
"\n",
|
310 |
+
"def tokenize(prompt):\n",
|
311 |
+
" # there's probably a way to do this with the tokenizer settings\n",
|
312 |
+
" # but again, gotta move fast\n",
|
313 |
+
" result = tokenizer(\n",
|
314 |
+
" prompt,\n",
|
315 |
+
" truncation=True,\n",
|
316 |
+
" max_length=CUTOFF_LEN + 1,\n",
|
317 |
+
" padding=\"max_length\",\n",
|
318 |
+
" )\n",
|
319 |
+
" return {\n",
|
320 |
+
" \"input_ids\": result[\"input_ids\"][:-1],\n",
|
321 |
+
" \"attention_mask\": result[\"attention_mask\"][:-1],\n",
|
322 |
+
" }"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "code",
|
327 |
+
"execution_count": null,
|
328 |
+
"metadata": {
|
329 |
+
"execution": {
|
330 |
+
"iopub.execute_input": "2023-07-18T12:05:43.936195Z",
|
331 |
+
"iopub.status.busy": "2023-07-18T12:05:43.935598Z",
|
332 |
+
"iopub.status.idle": "2023-07-18T12:06:03.137794Z",
|
333 |
+
"shell.execute_reply": "2023-07-18T12:06:03.136986Z",
|
334 |
+
"shell.execute_reply.started": "2023-07-18T12:05:43.936177Z"
|
335 |
+
},
|
336 |
+
"id": "81oSm3GL9z72"
|
337 |
+
},
|
338 |
+
"outputs": [],
|
339 |
+
"source": [
|
340 |
+
"data = data.shuffle().map(lambda x: tokenize(generate_prompt(x)))"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": null,
|
346 |
+
"metadata": {
|
347 |
+
"execution": {
|
348 |
+
"iopub.execute_input": "2023-07-18T12:06:03.139179Z",
|
349 |
+
"iopub.status.busy": "2023-07-18T12:06:03.138947Z",
|
350 |
+
"iopub.status.idle": "2023-07-18T12:06:03.292197Z",
|
351 |
+
"shell.execute_reply": "2023-07-18T12:06:03.291371Z",
|
352 |
+
"shell.execute_reply.started": "2023-07-18T12:06:03.139159Z"
|
353 |
+
},
|
354 |
+
"id": "INGJJZ6dkpJu"
|
355 |
+
},
|
356 |
+
"outputs": [],
|
357 |
+
"source": [
|
358 |
+
"trainer = transformers.Trainer(\n",
|
359 |
+
" model=model,\n",
|
360 |
+
" train_dataset=data[\"train\"],\n",
|
361 |
+
" args=transformers.TrainingArguments(\n",
|
362 |
+
" per_device_train_batch_size=MICRO_BATCH_SIZE,\n",
|
363 |
+
" gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,\n",
|
364 |
+
" warmup_steps=100,\n",
|
365 |
+
" num_train_epochs=EPOCHS,\n",
|
366 |
+
" learning_rate=LEARNING_RATE,\n",
|
367 |
+
" fp16=True,\n",
|
368 |
+
" logging_steps=20,\n",
|
369 |
+
" output_dir=\"lora-cabra-3Bv2\",\n",
|
370 |
+
" save_total_limit=4, \n",
|
371 |
+
" save_steps=20\n",
|
372 |
+
" ),\n",
|
373 |
+
" data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),\n",
|
374 |
+
")\n",
|
375 |
+
"model.config.use_cache = False\n",
|
376 |
+
"\n"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"cell_type": "code",
|
381 |
+
"execution_count": null,
|
382 |
+
"metadata": {
|
383 |
+
"execution": {
|
384 |
+
"iopub.execute_input": "2023-07-18T12:06:03.293628Z",
|
385 |
+
"iopub.status.busy": "2023-07-18T12:06:03.293172Z",
|
386 |
+
"iopub.status.idle": "2023-07-18T19:30:15.565676Z",
|
387 |
+
"shell.execute_reply": "2023-07-18T19:30:15.564948Z",
|
388 |
+
"shell.execute_reply.started": "2023-07-18T12:06:03.293609Z"
|
389 |
+
},
|
390 |
+
"id": "XrdM-8F8_59v"
|
391 |
+
},
|
392 |
+
"outputs": [],
|
393 |
+
"source": [
|
394 |
+
"\n",
|
395 |
+
"trainer.train(resume_from_checkpoint=True)"
|
396 |
+
]
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"cell_type": "code",
|
400 |
+
"execution_count": null,
|
401 |
+
"metadata": {
|
402 |
+
"execution": {
|
403 |
+
"iopub.execute_input": "2023-07-18T19:30:15.567903Z",
|
404 |
+
"iopub.status.busy": "2023-07-18T19:30:15.567445Z",
|
405 |
+
"iopub.status.idle": "2023-07-18T19:30:15.617103Z",
|
406 |
+
"shell.execute_reply": "2023-07-18T19:30:15.616512Z",
|
407 |
+
"shell.execute_reply.started": "2023-07-18T19:30:15.567879Z"
|
408 |
+
},
|
409 |
+
"id": "3JY4QEi7lXyY"
|
410 |
+
},
|
411 |
+
"outputs": [],
|
412 |
+
"source": [
|
413 |
+
"model.save_pretrained(\"open-llama-3bv2-lora-cabra-adapter-140steps\")"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "code",
|
418 |
+
"execution_count": null,
|
419 |
+
"metadata": {
|
420 |
+
"execution": {
|
421 |
+
"iopub.execute_input": "2023-07-18T19:45:30.280575Z",
|
422 |
+
"iopub.status.busy": "2023-07-18T19:45:30.280294Z",
|
423 |
+
"iopub.status.idle": "2023-07-18T19:45:31.880370Z",
|
424 |
+
"shell.execute_reply": "2023-07-18T19:45:31.879581Z",
|
425 |
+
"shell.execute_reply.started": "2023-07-18T19:45:30.280556Z"
|
426 |
+
}
|
427 |
+
},
|
428 |
+
"outputs": [],
|
429 |
+
"source": [
|
430 |
+
"# !tar -czvf open-llama-13b-lora-cabra-adapter.tar.gz ./open-llama-13b-lora-cabra-adapter"
|
431 |
+
]
|
432 |
+
}
|
433 |
+
],
|
434 |
+
"metadata": {
|
435 |
+
"accelerator": "GPU",
|
436 |
+
"colab": {
|
437 |
+
"gpuClass": "premium",
|
438 |
+
"gpuType": "T4",
|
439 |
+
"machine_shape": "hm",
|
440 |
+
"provenance": []
|
441 |
+
},
|
442 |
+
"gpuClass": "premium",
|
443 |
+
"kernelspec": {
|
444 |
+
"display_name": "Python 3 (ipykernel)",
|
445 |
+
"language": "python",
|
446 |
+
"name": "python3"
|
447 |
+
},
|
448 |
+
"language_info": {
|
449 |
+
"codemirror_mode": {
|
450 |
+
"name": "ipython",
|
451 |
+
"version": 3
|
452 |
+
},
|
453 |
+
"file_extension": ".py",
|
454 |
+
"mimetype": "text/x-python",
|
455 |
+
"name": "python",
|
456 |
+
"nbconvert_exporter": "python",
|
457 |
+
"pygments_lexer": "ipython3",
|
458 |
+
"version": "3.10.12"
|
459 |
+
},
|
460 |
+
"widgets": {
|
461 |
+
"application/vnd.jupyter.widget-state+json": {
|
462 |
+
"03717756681149898e8c3d40cbc16d10": {
|
463 |
+
"model_module": "@jupyter-widgets/controls",
|
464 |
+
"model_module_version": "1.5.0",
|
465 |
+
"model_name": "HTMLModel",
|
466 |
+
"state": {
|
467 |
+
"_dom_classes": [],
|
468 |
+
"_model_module": "@jupyter-widgets/controls",
|
469 |
+
"_model_module_version": "1.5.0",
|
470 |
+
"_model_name": "HTMLModel",
|
471 |
+
"_view_count": null,
|
472 |
+
"_view_module": "@jupyter-widgets/controls",
|
473 |
+
"_view_module_version": "1.5.0",
|
474 |
+
"_view_name": "HTMLView",
|
475 |
+
"description": "",
|
476 |
+
"description_tooltip": null,
|
477 |
+
"layout": "IPY_MODEL_109d32c6d765417daf49b425b7ccee68",
|
478 |
+
"placeholder": "",
|
479 |
+
"style": "IPY_MODEL_56217a5954624e6f8742ba914183cb9e",
|
480 |
+
"value": "Loading checkpoint shards: 0%"
|
481 |
+
}
|
482 |
+
},
|
483 |
+
"109d32c6d765417daf49b425b7ccee68": {
|
484 |
+
"model_module": "@jupyter-widgets/base",
|
485 |
+
"model_module_version": "1.2.0",
|
486 |
+
"model_name": "LayoutModel",
|
487 |
+
"state": {
|
488 |
+
"_model_module": "@jupyter-widgets/base",
|
489 |
+
"_model_module_version": "1.2.0",
|
490 |
+
"_model_name": "LayoutModel",
|
491 |
+
"_view_count": null,
|
492 |
+
"_view_module": "@jupyter-widgets/base",
|
493 |
+
"_view_module_version": "1.2.0",
|
494 |
+
"_view_name": "LayoutView",
|
495 |
+
"align_content": null,
|
496 |
+
"align_items": null,
|
497 |
+
"align_self": null,
|
498 |
+
"border": null,
|
499 |
+
"bottom": null,
|
500 |
+
"display": null,
|
501 |
+
"flex": null,
|
502 |
+
"flex_flow": null,
|
503 |
+
"grid_area": null,
|
504 |
+
"grid_auto_columns": null,
|
505 |
+
"grid_auto_flow": null,
|
506 |
+
"grid_auto_rows": null,
|
507 |
+
"grid_column": null,
|
508 |
+
"grid_gap": null,
|
509 |
+
"grid_row": null,
|
510 |
+
"grid_template_areas": null,
|
511 |
+
"grid_template_columns": null,
|
512 |
+
"grid_template_rows": null,
|
513 |
+
"height": null,
|
514 |
+
"justify_content": null,
|
515 |
+
"justify_items": null,
|
516 |
+
"left": null,
|
517 |
+
"margin": null,
|
518 |
+
"max_height": null,
|
519 |
+
"max_width": null,
|
520 |
+
"min_height": null,
|
521 |
+
"min_width": null,
|
522 |
+
"object_fit": null,
|
523 |
+
"object_position": null,
|
524 |
+
"order": null,
|
525 |
+
"overflow": null,
|
526 |
+
"overflow_x": null,
|
527 |
+
"overflow_y": null,
|
528 |
+
"padding": null,
|
529 |
+
"right": null,
|
530 |
+
"top": null,
|
531 |
+
"visibility": null,
|
532 |
+
"width": null
|
533 |
+
}
|
534 |
+
},
|
535 |
+
"42a0b19d55b24e4ea5ce7894e4b8df50": {
|
536 |
+
"model_module": "@jupyter-widgets/base",
|
537 |
+
"model_module_version": "1.2.0",
|
538 |
+
"model_name": "LayoutModel",
|
539 |
+
"state": {
|
540 |
+
"_model_module": "@jupyter-widgets/base",
|
541 |
+
"_model_module_version": "1.2.0",
|
542 |
+
"_model_name": "LayoutModel",
|
543 |
+
"_view_count": null,
|
544 |
+
"_view_module": "@jupyter-widgets/base",
|
545 |
+
"_view_module_version": "1.2.0",
|
546 |
+
"_view_name": "LayoutView",
|
547 |
+
"align_content": null,
|
548 |
+
"align_items": null,
|
549 |
+
"align_self": null,
|
550 |
+
"border": null,
|
551 |
+
"bottom": null,
|
552 |
+
"display": null,
|
553 |
+
"flex": null,
|
554 |
+
"flex_flow": null,
|
555 |
+
"grid_area": null,
|
556 |
+
"grid_auto_columns": null,
|
557 |
+
"grid_auto_flow": null,
|
558 |
+
"grid_auto_rows": null,
|
559 |
+
"grid_column": null,
|
560 |
+
"grid_gap": null,
|
561 |
+
"grid_row": null,
|
562 |
+
"grid_template_areas": null,
|
563 |
+
"grid_template_columns": null,
|
564 |
+
"grid_template_rows": null,
|
565 |
+
"height": null,
|
566 |
+
"justify_content": null,
|
567 |
+
"justify_items": null,
|
568 |
+
"left": null,
|
569 |
+
"margin": null,
|
570 |
+
"max_height": null,
|
571 |
+
"max_width": null,
|
572 |
+
"min_height": null,
|
573 |
+
"min_width": null,
|
574 |
+
"object_fit": null,
|
575 |
+
"object_position": null,
|
576 |
+
"order": null,
|
577 |
+
"overflow": null,
|
578 |
+
"overflow_x": null,
|
579 |
+
"overflow_y": null,
|
580 |
+
"padding": null,
|
581 |
+
"right": null,
|
582 |
+
"top": null,
|
583 |
+
"visibility": null,
|
584 |
+
"width": null
|
585 |
+
}
|
586 |
+
},
|
587 |
+
"4348c4efdd4d4deb945bb2838c24cd83": {
|
588 |
+
"model_module": "@jupyter-widgets/controls",
|
589 |
+
"model_module_version": "1.5.0",
|
590 |
+
"model_name": "ProgressStyleModel",
|
591 |
+
"state": {
|
592 |
+
"_model_module": "@jupyter-widgets/controls",
|
593 |
+
"_model_module_version": "1.5.0",
|
594 |
+
"_model_name": "ProgressStyleModel",
|
595 |
+
"_view_count": null,
|
596 |
+
"_view_module": "@jupyter-widgets/base",
|
597 |
+
"_view_module_version": "1.2.0",
|
598 |
+
"_view_name": "StyleView",
|
599 |
+
"bar_color": null,
|
600 |
+
"description_width": ""
|
601 |
+
}
|
602 |
+
},
|
603 |
+
"43c5c35af8f44f1f98def57ea60a9615": {
|
604 |
+
"model_module": "@jupyter-widgets/controls",
|
605 |
+
"model_module_version": "1.5.0",
|
606 |
+
"model_name": "DescriptionStyleModel",
|
607 |
+
"state": {
|
608 |
+
"_model_module": "@jupyter-widgets/controls",
|
609 |
+
"_model_module_version": "1.5.0",
|
610 |
+
"_model_name": "DescriptionStyleModel",
|
611 |
+
"_view_count": null,
|
612 |
+
"_view_module": "@jupyter-widgets/base",
|
613 |
+
"_view_module_version": "1.2.0",
|
614 |
+
"_view_name": "StyleView",
|
615 |
+
"description_width": ""
|
616 |
+
}
|
617 |
+
},
|
618 |
+
"56217a5954624e6f8742ba914183cb9e": {
|
619 |
+
"model_module": "@jupyter-widgets/controls",
|
620 |
+
"model_module_version": "1.5.0",
|
621 |
+
"model_name": "DescriptionStyleModel",
|
622 |
+
"state": {
|
623 |
+
"_model_module": "@jupyter-widgets/controls",
|
624 |
+
"_model_module_version": "1.5.0",
|
625 |
+
"_model_name": "DescriptionStyleModel",
|
626 |
+
"_view_count": null,
|
627 |
+
"_view_module": "@jupyter-widgets/base",
|
628 |
+
"_view_module_version": "1.2.0",
|
629 |
+
"_view_name": "StyleView",
|
630 |
+
"description_width": ""
|
631 |
+
}
|
632 |
+
},
|
633 |
+
"8f860f6f760e49b889fc450c53e49ac5": {
|
634 |
+
"model_module": "@jupyter-widgets/base",
|
635 |
+
"model_module_version": "1.2.0",
|
636 |
+
"model_name": "LayoutModel",
|
637 |
+
"state": {
|
638 |
+
"_model_module": "@jupyter-widgets/base",
|
639 |
+
"_model_module_version": "1.2.0",
|
640 |
+
"_model_name": "LayoutModel",
|
641 |
+
"_view_count": null,
|
642 |
+
"_view_module": "@jupyter-widgets/base",
|
643 |
+
"_view_module_version": "1.2.0",
|
644 |
+
"_view_name": "LayoutView",
|
645 |
+
"align_content": null,
|
646 |
+
"align_items": null,
|
647 |
+
"align_self": null,
|
648 |
+
"border": null,
|
649 |
+
"bottom": null,
|
650 |
+
"display": null,
|
651 |
+
"flex": null,
|
652 |
+
"flex_flow": null,
|
653 |
+
"grid_area": null,
|
654 |
+
"grid_auto_columns": null,
|
655 |
+
"grid_auto_flow": null,
|
656 |
+
"grid_auto_rows": null,
|
657 |
+
"grid_column": null,
|
658 |
+
"grid_gap": null,
|
659 |
+
"grid_row": null,
|
660 |
+
"grid_template_areas": null,
|
661 |
+
"grid_template_columns": null,
|
662 |
+
"grid_template_rows": null,
|
663 |
+
"height": null,
|
664 |
+
"justify_content": null,
|
665 |
+
"justify_items": null,
|
666 |
+
"left": null,
|
667 |
+
"margin": null,
|
668 |
+
"max_height": null,
|
669 |
+
"max_width": null,
|
670 |
+
"min_height": null,
|
671 |
+
"min_width": null,
|
672 |
+
"object_fit": null,
|
673 |
+
"object_position": null,
|
674 |
+
"order": null,
|
675 |
+
"overflow": null,
|
676 |
+
"overflow_x": null,
|
677 |
+
"overflow_y": null,
|
678 |
+
"padding": null,
|
679 |
+
"right": null,
|
680 |
+
"top": null,
|
681 |
+
"visibility": null,
|
682 |
+
"width": null
|
683 |
+
}
|
684 |
+
},
|
685 |
+
"af52a9b6412e46c6b82acb9afabd12d9": {
|
686 |
+
"model_module": "@jupyter-widgets/base",
|
687 |
+
"model_module_version": "1.2.0",
|
688 |
+
"model_name": "LayoutModel",
|
689 |
+
"state": {
|
690 |
+
"_model_module": "@jupyter-widgets/base",
|
691 |
+
"_model_module_version": "1.2.0",
|
692 |
+
"_model_name": "LayoutModel",
|
693 |
+
"_view_count": null,
|
694 |
+
"_view_module": "@jupyter-widgets/base",
|
695 |
+
"_view_module_version": "1.2.0",
|
696 |
+
"_view_name": "LayoutView",
|
697 |
+
"align_content": null,
|
698 |
+
"align_items": null,
|
699 |
+
"align_self": null,
|
700 |
+
"border": null,
|
701 |
+
"bottom": null,
|
702 |
+
"display": null,
|
703 |
+
"flex": null,
|
704 |
+
"flex_flow": null,
|
705 |
+
"grid_area": null,
|
706 |
+
"grid_auto_columns": null,
|
707 |
+
"grid_auto_flow": null,
|
708 |
+
"grid_auto_rows": null,
|
709 |
+
"grid_column": null,
|
710 |
+
"grid_gap": null,
|
711 |
+
"grid_row": null,
|
712 |
+
"grid_template_areas": null,
|
713 |
+
"grid_template_columns": null,
|
714 |
+
"grid_template_rows": null,
|
715 |
+
"height": null,
|
716 |
+
"justify_content": null,
|
717 |
+
"justify_items": null,
|
718 |
+
"left": null,
|
719 |
+
"margin": null,
|
720 |
+
"max_height": null,
|
721 |
+
"max_width": null,
|
722 |
+
"min_height": null,
|
723 |
+
"min_width": null,
|
724 |
+
"object_fit": null,
|
725 |
+
"object_position": null,
|
726 |
+
"order": null,
|
727 |
+
"overflow": null,
|
728 |
+
"overflow_x": null,
|
729 |
+
"overflow_y": null,
|
730 |
+
"padding": null,
|
731 |
+
"right": null,
|
732 |
+
"top": null,
|
733 |
+
"visibility": null,
|
734 |
+
"width": null
|
735 |
+
}
|
736 |
+
},
|
737 |
+
"d718c5abc21b4394a4314fdc289d830d": {
|
738 |
+
"model_module": "@jupyter-widgets/controls",
|
739 |
+
"model_module_version": "1.5.0",
|
740 |
+
"model_name": "FloatProgressModel",
|
741 |
+
"state": {
|
742 |
+
"_dom_classes": [],
|
743 |
+
"_model_module": "@jupyter-widgets/controls",
|
744 |
+
"_model_module_version": "1.5.0",
|
745 |
+
"_model_name": "FloatProgressModel",
|
746 |
+
"_view_count": null,
|
747 |
+
"_view_module": "@jupyter-widgets/controls",
|
748 |
+
"_view_module_version": "1.5.0",
|
749 |
+
"_view_name": "ProgressView",
|
750 |
+
"bar_style": "",
|
751 |
+
"description": "",
|
752 |
+
"description_tooltip": null,
|
753 |
+
"layout": "IPY_MODEL_42a0b19d55b24e4ea5ce7894e4b8df50",
|
754 |
+
"max": 2,
|
755 |
+
"min": 0,
|
756 |
+
"orientation": "horizontal",
|
757 |
+
"style": "IPY_MODEL_4348c4efdd4d4deb945bb2838c24cd83",
|
758 |
+
"value": 0
|
759 |
+
}
|
760 |
+
},
|
761 |
+
"ee8532b0710541abb5f208e654b6d55a": {
|
762 |
+
"model_module": "@jupyter-widgets/controls",
|
763 |
+
"model_module_version": "1.5.0",
|
764 |
+
"model_name": "HTMLModel",
|
765 |
+
"state": {
|
766 |
+
"_dom_classes": [],
|
767 |
+
"_model_module": "@jupyter-widgets/controls",
|
768 |
+
"_model_module_version": "1.5.0",
|
769 |
+
"_model_name": "HTMLModel",
|
770 |
+
"_view_count": null,
|
771 |
+
"_view_module": "@jupyter-widgets/controls",
|
772 |
+
"_view_module_version": "1.5.0",
|
773 |
+
"_view_name": "HTMLView",
|
774 |
+
"description": "",
|
775 |
+
"description_tooltip": null,
|
776 |
+
"layout": "IPY_MODEL_8f860f6f760e49b889fc450c53e49ac5",
|
777 |
+
"placeholder": "",
|
778 |
+
"style": "IPY_MODEL_43c5c35af8f44f1f98def57ea60a9615",
|
779 |
+
"value": " 0/2 [00:00<?, ?it/s]"
|
780 |
+
}
|
781 |
+
},
|
782 |
+
"f3fb12d97dee43aaa51784182caed544": {
|
783 |
+
"model_module": "@jupyter-widgets/controls",
|
784 |
+
"model_module_version": "1.5.0",
|
785 |
+
"model_name": "HBoxModel",
|
786 |
+
"state": {
|
787 |
+
"_dom_classes": [],
|
788 |
+
"_model_module": "@jupyter-widgets/controls",
|
789 |
+
"_model_module_version": "1.5.0",
|
790 |
+
"_model_name": "HBoxModel",
|
791 |
+
"_view_count": null,
|
792 |
+
"_view_module": "@jupyter-widgets/controls",
|
793 |
+
"_view_module_version": "1.5.0",
|
794 |
+
"_view_name": "HBoxView",
|
795 |
+
"box_style": "",
|
796 |
+
"children": [
|
797 |
+
"IPY_MODEL_03717756681149898e8c3d40cbc16d10",
|
798 |
+
"IPY_MODEL_d718c5abc21b4394a4314fdc289d830d",
|
799 |
+
"IPY_MODEL_ee8532b0710541abb5f208e654b6d55a"
|
800 |
+
],
|
801 |
+
"layout": "IPY_MODEL_af52a9b6412e46c6b82acb9afabd12d9"
|
802 |
+
}
|
803 |
+
}
|
804 |
+
}
|
805 |
+
}
|
806 |
+
},
|
807 |
+
"nbformat": 4,
|
808 |
+
"nbformat_minor": 4
|
809 |
+
}
|