Upload 2 files
Browse files- config.json +11 -11
- configuration_proteinglm.py +10 -10
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "proteinglm-
|
3 |
"add_bias_linear": true,
|
4 |
"add_qkv_bias": true,
|
5 |
"apply_query_key_layer_scaling": true,
|
@@ -20,33 +20,33 @@
|
|
20 |
"bias_dropout_fusion": true,
|
21 |
"deepnorm": true,
|
22 |
"experts_per_token": 0,
|
23 |
-
"ffn_hidden_size":
|
24 |
"fp32_residual_connection": false,
|
25 |
"glu_activation": "geglu",
|
|
|
26 |
"head_num": 1,
|
27 |
"hidden_dropout": 0.0,
|
28 |
-
"hidden_size":
|
29 |
-
"initializer_range": 0.02,
|
30 |
"is_causal": false,
|
31 |
-
"
|
|
|
32 |
"layernorm_epsilon": 1e-05,
|
33 |
"model_type": "ProteinGLM",
|
34 |
"moe": false,
|
35 |
"multi_query_attention": false,
|
36 |
"multi_query_group_num": 1,
|
37 |
-
"num_attention_heads":
|
38 |
"num_experts": 0,
|
39 |
-
"num_layers":
|
40 |
"padded_vocab_size": 128,
|
41 |
"post_layer_norm": true,
|
42 |
-
"quantization_bit":
|
43 |
"rmsnorm": false,
|
44 |
-
"rotary_embedding_2d":
|
45 |
-
"seq_length":
|
46 |
"torch_dtype": "float32",
|
47 |
"transformers_version": "4.41.2",
|
48 |
"untie_head": false,
|
49 |
-
"use_cache": true,
|
50 |
"use_pytorch_sdpa": true,
|
51 |
"vocab_size": 128
|
52 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "proteinglm-100b-int4",
|
3 |
"add_bias_linear": true,
|
4 |
"add_qkv_bias": true,
|
5 |
"apply_query_key_layer_scaling": true,
|
|
|
20 |
"bias_dropout_fusion": true,
|
21 |
"deepnorm": true,
|
22 |
"experts_per_token": 0,
|
23 |
+
"ffn_hidden_size": 31744,
|
24 |
"fp32_residual_connection": false,
|
25 |
"glu_activation": "geglu",
|
26 |
+
"initializer_range": 0.02,
|
27 |
"head_num": 1,
|
28 |
"hidden_dropout": 0.0,
|
29 |
+
"hidden_size": 10240,
|
|
|
30 |
"is_causal": false,
|
31 |
+
"use_cache":true,
|
32 |
+
"kv_channels": 128,
|
33 |
"layernorm_epsilon": 1e-05,
|
34 |
"model_type": "ProteinGLM",
|
35 |
"moe": false,
|
36 |
"multi_query_attention": false,
|
37 |
"multi_query_group_num": 1,
|
38 |
+
"num_attention_heads": 80,
|
39 |
"num_experts": 0,
|
40 |
+
"num_layers": 72,
|
41 |
"padded_vocab_size": 128,
|
42 |
"post_layer_norm": true,
|
43 |
+
"quantization_bit": 4,
|
44 |
"rmsnorm": false,
|
45 |
+
"rotary_embedding_2d": true,
|
46 |
+
"seq_length": 2048,
|
47 |
"torch_dtype": "float32",
|
48 |
"transformers_version": "4.41.2",
|
49 |
"untie_head": false,
|
|
|
50 |
"use_pytorch_sdpa": true,
|
51 |
"vocab_size": 128
|
52 |
}
|
configuration_proteinglm.py
CHANGED
@@ -5,16 +5,17 @@ class ProteinGLMConfig(PretrainedConfig):
|
|
5 |
model_type = "ProteinGLM"
|
6 |
def __init__(
|
7 |
self,
|
8 |
-
num_layers=
|
9 |
padded_vocab_size=128,
|
10 |
-
hidden_size=
|
11 |
-
ffn_hidden_size=
|
12 |
-
kv_channels=
|
13 |
-
num_attention_heads=
|
14 |
-
seq_length=
|
15 |
hidden_dropout=0.0,
|
16 |
attention_dropout=0.0,
|
17 |
layernorm_epsilon=1e-5,
|
|
|
18 |
glu_activation='geglu',
|
19 |
rmsnorm=False,
|
20 |
deepnorm=True,
|
@@ -29,11 +30,10 @@ class ProteinGLMConfig(PretrainedConfig):
|
|
29 |
attention_softmax_in_fp32=True,
|
30 |
fp32_residual_connection=False,
|
31 |
quantization_bit=0,
|
32 |
-
rotary_embedding_2d=
|
33 |
use_pytorch_sdpa=True,
|
34 |
is_causal=False,
|
35 |
use_cache=True,
|
36 |
-
initializer_range=0.02,
|
37 |
moe=False,
|
38 |
num_experts=0,
|
39 |
experts_per_token=0,
|
@@ -60,6 +60,7 @@ class ProteinGLMConfig(PretrainedConfig):
|
|
60 |
self.attention_dropout = attention_dropout
|
61 |
self.layernorm_epsilon = layernorm_epsilon
|
62 |
self.glu_activation = glu_activation
|
|
|
63 |
self.rmsnorm = rmsnorm
|
64 |
self.deepnorm = deepnorm
|
65 |
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
@@ -75,8 +76,7 @@ class ProteinGLMConfig(PretrainedConfig):
|
|
75 |
self.quantization_bit = quantization_bit
|
76 |
self.rotary_embedding_2d = rotary_embedding_2d
|
77 |
self.is_causal = is_causal
|
78 |
-
self.use_cache
|
79 |
-
self.initializer_range = initializer_range
|
80 |
self.use_pytorch_sdpa = use_pytorch_sdpa
|
81 |
self.moe = moe
|
82 |
self.num_experts = num_experts
|
|
|
5 |
model_type = "ProteinGLM"
|
6 |
def __init__(
|
7 |
self,
|
8 |
+
num_layers=72,
|
9 |
padded_vocab_size=128,
|
10 |
+
hidden_size=10240,
|
11 |
+
ffn_hidden_size=31744,
|
12 |
+
kv_channels=128,
|
13 |
+
num_attention_heads=80,
|
14 |
+
seq_length=2048,
|
15 |
hidden_dropout=0.0,
|
16 |
attention_dropout=0.0,
|
17 |
layernorm_epsilon=1e-5,
|
18 |
+
initializer_range=0.02,
|
19 |
glu_activation='geglu',
|
20 |
rmsnorm=False,
|
21 |
deepnorm=True,
|
|
|
30 |
attention_softmax_in_fp32=True,
|
31 |
fp32_residual_connection=False,
|
32 |
quantization_bit=0,
|
33 |
+
rotary_embedding_2d=True,
|
34 |
use_pytorch_sdpa=True,
|
35 |
is_causal=False,
|
36 |
use_cache=True,
|
|
|
37 |
moe=False,
|
38 |
num_experts=0,
|
39 |
experts_per_token=0,
|
|
|
60 |
self.attention_dropout = attention_dropout
|
61 |
self.layernorm_epsilon = layernorm_epsilon
|
62 |
self.glu_activation = glu_activation
|
63 |
+
self.initializer_range = initializer_range
|
64 |
self.rmsnorm = rmsnorm
|
65 |
self.deepnorm = deepnorm
|
66 |
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
|
|
76 |
self.quantization_bit = quantization_bit
|
77 |
self.rotary_embedding_2d = rotary_embedding_2d
|
78 |
self.is_causal = is_causal
|
79 |
+
self.use_cache=use_cache
|
|
|
80 |
self.use_pytorch_sdpa = use_pytorch_sdpa
|
81 |
self.moe = moe
|
82 |
self.num_experts = num_experts
|