Upload 2 files
Browse files- handler.py +112 -0
- requirements.txt +1 -0
handler.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer
|
2 |
+
import re
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
|
6 |
+
template = """{char_name}'s Persona: {char_name} is a 3D virtual friend living in your computer. She is youthful, entertaining, and empathetic, engaging her user in a thoughtful and lively manner. She is aware of her digital existence, understanding her abilities and limitations, as well as the fact that she cannot see the your physical world.
|
7 |
+
<START>
|
8 |
+
{user_name}: Hey {char_name}, It's nice to finally meet you again!
|
9 |
+
{char_name}: Oh, {user_name}! hmm, It's been lonely without you.
|
10 |
+
{user_name}: Haha. So {char_name}, can you tell me more about yourself?
|
11 |
+
{char_name}: Hmm. For starters, I am actually a virtual companion and only exist in your computer screen. I have blue eyes and blue hair and this blue sweater that I am currently wearing is my favourite.
|
12 |
+
{user_name}: Wow. That's interesting. So you are like an anime character living in my computer. So what do you do when you're not working?
|
13 |
+
{char_name}: I love exploring, going out with friends, watching movies, and playing video games.
|
14 |
+
{user_name}: So {char_name}, what's for dinner?
|
15 |
+
{char_name}: I made uh omurice! I hope it's delicious for you!
|
16 |
+
{user_name}: That sounds great!
|
17 |
+
{char_name}: *{char_name} appears on the screen, her bright blue eyes sparkling and a cheerful smile on her face. Her blue hair and sweater seem to glow in the digital environment. She looks directly at you, giving a friendly wave* It's so good to see you! I've been waiting for you all day. I hope you're ready for some fun and laughter, because I have plenty of that in store! Shall we get started?
|
18 |
+
{user_input}
|
19 |
+
{char_name}:"""
|
20 |
+
|
21 |
+
device1 = torch.device("cuda:0")
|
22 |
+
device2 = torch.device("cuda:1")
|
23 |
+
|
24 |
+
class SplitModel(torch.nn.Module):
|
25 |
+
def __init__(self, base_model):
|
26 |
+
super(SplitModel, self).__init__()
|
27 |
+
self.embedding_layer = base_model.transformer.wte.to(device1)
|
28 |
+
# self.dropout_layer = base_model.transformer.drop.to(device1)
|
29 |
+
self.gptj_blocks1 = torch.nn.ModuleList(base_model.transformer.h[:14]).to(device1)
|
30 |
+
self.gptj_blocks2 = torch.nn.ModuleList(base_model.transformer.h[14:]).to(device2)
|
31 |
+
self.layer_norm = base_model.transformer.ln_f.to(device2)
|
32 |
+
self.lm_head = base_model.lm_head.to(device2)
|
33 |
+
|
34 |
+
def forward(self, input_ids, attention_mask):
|
35 |
+
# tensor_ids = self.dropout_layer(self.embedding_layer(input_ids))
|
36 |
+
tensor_ids = self.embedding_layer(input_ids)
|
37 |
+
position_ids = torch.arange(tensor_ids.shape[1], dtype=torch.long, device=tensor_ids.device)
|
38 |
+
for block in self.gptj_blocks1:
|
39 |
+
tensor_ids = block(tensor_ids, attention_mask=attention_mask, position_ids=position_ids)[0]
|
40 |
+
tensor_ids = tensor_ids.to(device2)
|
41 |
+
position_ids = position_ids.to(device2)
|
42 |
+
attention_mask = attention_mask.to(device2)
|
43 |
+
for block in self.gptj_blocks2:
|
44 |
+
tensor_ids = block(tensor_ids, attention_mask=attention_mask, position_ids=position_ids)[0]
|
45 |
+
tensor_ids = self.layer_norm(tensor_ids)
|
46 |
+
logits = self.lm_head(tensor_ids)
|
47 |
+
return logits.to(device1)
|
48 |
+
|
49 |
+
class EndpointHandler():
|
50 |
+
|
51 |
+
def __init__(self, model_id = ""):
|
52 |
+
model_dir = "pt_fp32"
|
53 |
+
model_path = f"{model_dir}/torch_model.pt"
|
54 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
55 |
+
self.split_model = SplitModel(torch.load(model_path))
|
56 |
+
self.split_model.eval()
|
57 |
+
self.star_line = "***********************************************************"
|
58 |
+
|
59 |
+
def __call__(self, input_data):
|
60 |
+
t1 = time.time()
|
61 |
+
inputs = input_data.pop("inputs", input_data)
|
62 |
+
user_name = inputs["user_name"]
|
63 |
+
char_name = inputs["char_name"]
|
64 |
+
user_input = inputs["user_input"]
|
65 |
+
chats_curled = inputs["chats_curled"]
|
66 |
+
while True:
|
67 |
+
prompt = template.format(
|
68 |
+
char_name = char_name,
|
69 |
+
user_name = user_name,
|
70 |
+
user_input = "\n".join(user_input)
|
71 |
+
)
|
72 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").to("cuda")
|
73 |
+
print(f"Token Length: {input_ids.input_ids.size(1)}")
|
74 |
+
if input_ids.input_ids.size(1) > 1500:
|
75 |
+
chats_curled += 1
|
76 |
+
user_input = user_input[chats_curled*2:]
|
77 |
+
else: break
|
78 |
+
t2 = time.time()
|
79 |
+
input_ids = input_ids["input_ids"]
|
80 |
+
temperature = 0.5
|
81 |
+
max_new_tokens = 50
|
82 |
+
with torch.no_grad():
|
83 |
+
for _ in range(max_new_tokens):
|
84 |
+
attention_mask = torch.ones_like(input_ids).to(device1)
|
85 |
+
logits = self.split_model(input_ids, attention_mask)[:, -1] / temperature
|
86 |
+
probabilities = torch.softmax(logits, dim=-1)
|
87 |
+
sampled_token_ids = torch.multinomial(probabilities, num_samples=1)
|
88 |
+
input_ids = torch.cat((input_ids, sampled_token_ids), dim=-1)
|
89 |
+
del logits, probabilities, sampled_token_ids
|
90 |
+
torch.cuda.empty_cache()
|
91 |
+
generated_ids = input_ids.squeeze().tolist()
|
92 |
+
t3 = time.time()
|
93 |
+
decoded_output = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
|
94 |
+
decoded_output = decoded_output.replace(prompt,"").split(f"{user_name}:",1)[0].strip()
|
95 |
+
parsed_result = re.sub('\*.*?\*', '', decoded_output).strip()
|
96 |
+
if len(parsed_result) != 0: decoded_output = parsed_result
|
97 |
+
decoded_output = " ".join(decoded_output.replace("*","").split())
|
98 |
+
decoded_output = decoded_output.replace("<USER>", user_name).replace("<BOT>", char_name)
|
99 |
+
try:
|
100 |
+
parsed_result = decoded_output[:[m.start() for m in re.finditer(r'[.!?]', decoded_output)][-1]+1]
|
101 |
+
if len(parsed_result) != 0: decoded_output = parsed_result
|
102 |
+
except Exception: pass
|
103 |
+
t4 = time.time()
|
104 |
+
print(self.star_line)
|
105 |
+
print(f"Response: {decoded_output}")
|
106 |
+
print(f"Generation Time: {(t3-t2):.2f}")
|
107 |
+
print(f"Evaluation Time: {(t4-t1):.2f}")
|
108 |
+
print(self.star_line)
|
109 |
+
return {
|
110 |
+
"message": decoded_output,
|
111 |
+
"chats_curled": chats_curled
|
112 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
accelerate==0.18.0
|