|
from transformers import AutoTokenizer |
|
import torch |
|
|
|
device1 = torch.device("cuda:0") |
|
device2 = torch.device("cuda:1") |
|
|
|
class SplitModel(torch.nn.Module): |
|
def __init__(self, base_model): |
|
super(SplitModel, self).__init__() |
|
self.embedding_layer = base_model.transformer.wte.to(device1) |
|
|
|
self.gptj_blocks1 = torch.nn.ModuleList(base_model.transformer.h[:14]).to(device1) |
|
self.gptj_blocks2 = torch.nn.ModuleList(base_model.transformer.h[14:]).to(device2) |
|
self.layer_norm = base_model.transformer.ln_f.to(device2) |
|
self.lm_head = base_model.lm_head.to(device2) |
|
|
|
def forward(self, input_ids, attention_mask): |
|
|
|
tensor_ids = self.embedding_layer(input_ids) |
|
position_ids = torch.arange(tensor_ids.shape[1], dtype=torch.long, device=tensor_ids.device) |
|
for block in self.gptj_blocks1: |
|
tensor_ids = block(tensor_ids, attention_mask=attention_mask, position_ids=position_ids)[0] |
|
tensor_ids = tensor_ids.to(device2) |
|
position_ids = position_ids.to(device2) |
|
attention_mask = attention_mask.to(device2) |
|
for block in self.gptj_blocks2: |
|
tensor_ids = block(tensor_ids, attention_mask=attention_mask, position_ids=position_ids)[0] |
|
tensor_ids = self.layer_norm(tensor_ids) |
|
logits = self.lm_head(tensor_ids) |
|
return logits.to(device1) |
|
|
|
model_dir = "pt_fp32" |
|
model_path = f"{model_dir}/torch_model.pt" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_dir) |
|
split_model = SplitModel(torch.load(model_path)) |
|
|
|
input_text = "Hi I am Jade and I love" |
|
input_tokens = tokenizer.encode_plus(input_text, return_tensors="pt").to(device1) |
|
input_ids = input_tokens["input_ids"] |
|
temperature = 0.5 |
|
max_new_tokens = 50 |
|
with torch.no_grad(): |
|
|
|
for _ in range(max_new_tokens): |
|
attention_mask = torch.ones_like(input_ids).to(device1) |
|
logits = split_model(input_ids, attention_mask)[:, -1] / temperature |
|
probabilities = torch.softmax(logits, dim=-1) |
|
sampled_token_ids = torch.multinomial(probabilities, num_samples=1) |
|
input_ids = torch.cat((input_ids, sampled_token_ids), dim=-1) |
|
del logits, probabilities, sampled_token_ids |
|
generated_ids = input_ids.squeeze().tolist() |
|
output = tokenizer.decode(generated_ids, skip_special_tokens=True) |
|
print(output) |