Update handler.py (#1)
Browse files- Update handler.py (32958b5317300ea7ce493f656d75945c5f350421)
- handler.py +41 -38
handler.py
CHANGED
@@ -10,46 +10,49 @@ class EndpointHandler():
|
|
10 |
self.model = torch.load(f"{path}/torch_model.pt")
|
11 |
|
12 |
def __call__(self, data):
|
13 |
-
request_inputs = data.pop("inputs", data)
|
14 |
-
template = request_inputs["template"]
|
15 |
-
messages = request_inputs["messages"]
|
16 |
-
char_name = request_inputs["char_name"]
|
17 |
-
user_name = request_inputs["user_name"]
|
18 |
-
template = open(f"{template}.txt", "r").read()
|
19 |
-
user_input = "\n".join([
|
20 |
-
"{name}: {message}".format(
|
21 |
-
name = char_name if (id["role"] == "AI") else user_name,
|
22 |
-
message = id["message"].strip()
|
23 |
-
) for id in messages
|
24 |
-
])
|
25 |
-
prompt = template.format(
|
26 |
-
char_name = char_name,
|
27 |
-
user_name = user_name,
|
28 |
-
user_input = user_input
|
29 |
-
)
|
30 |
-
input_ids = self.tokenizer(
|
31 |
-
prompt + f"\n{char_name}:",
|
32 |
-
return_tensors = "pt"
|
33 |
-
).to("cuda")
|
34 |
-
encoded_output = self.model.generate(
|
35 |
-
input_ids["input_ids"],
|
36 |
-
max_new_tokens = 50,
|
37 |
-
temperature = 0.5,
|
38 |
-
top_p = 0.9,
|
39 |
-
top_k = 0,
|
40 |
-
repetition_penalty = 1.1,
|
41 |
-
pad_token_id = 50256,
|
42 |
-
num_return_sequences = 1
|
43 |
-
)
|
44 |
-
decoded_output = self.tokenizer.decode(encoded_output[0], skip_special_tokens=True).replace(prompt,"")
|
45 |
-
decoded_output = decoded_output.split(f"{char_name}:", 1)[1].split(f"{user_name}:",1)[0].strip()
|
46 |
-
parsed_result = re.sub('\*.*?\*', '', decoded_output).strip()
|
47 |
-
if len(parsed_result) != 0: decoded_output = parsed_result
|
48 |
-
decoded_output = " ".join(decoded_output.replace("*","").split())
|
49 |
try:
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
if len(parsed_result) != 0: decoded_output = parsed_result
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
return {
|
54 |
"role": "AI",
|
55 |
"message": decoded_output
|
|
|
10 |
self.model = torch.load(f"{path}/torch_model.pt")
|
11 |
|
12 |
def __call__(self, data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
try:
|
14 |
+
request_inputs = data.pop("inputs", data)
|
15 |
+
template = request_inputs["template"]
|
16 |
+
messages = request_inputs["messages"]
|
17 |
+
char_name = request_inputs["char_name"]
|
18 |
+
user_name = request_inputs["user_name"]
|
19 |
+
template = open(f"{template}.txt", "r").read()
|
20 |
+
user_input = "\n".join([
|
21 |
+
"{name}: {message}".format(
|
22 |
+
name = char_name if (id["role"] == "AI") else user_name,
|
23 |
+
message = id["message"].strip()
|
24 |
+
) for id in messages
|
25 |
+
])
|
26 |
+
prompt = template.format(
|
27 |
+
char_name = char_name,
|
28 |
+
user_name = user_name,
|
29 |
+
user_input = user_input
|
30 |
+
)
|
31 |
+
input_ids = self.tokenizer(
|
32 |
+
prompt + f"\n{char_name}:",
|
33 |
+
return_tensors = "pt"
|
34 |
+
).to("cuda")
|
35 |
+
encoded_output = self.model.generate(
|
36 |
+
input_ids["input_ids"],
|
37 |
+
max_new_tokens = 50,
|
38 |
+
temperature = 0.5,
|
39 |
+
top_p = 0.9,
|
40 |
+
top_k = 0,
|
41 |
+
repetition_penalty = 1.1,
|
42 |
+
pad_token_id = 50256,
|
43 |
+
num_return_sequences = 1
|
44 |
+
)
|
45 |
+
decoded_output = self.tokenizer.decode(encoded_output[0], skip_special_tokens=True).replace(prompt,"")
|
46 |
+
decoded_output = decoded_output.split(f"{char_name}:", 1)[1].split(f"{user_name}:",1)[0].strip()
|
47 |
+
parsed_result = re.sub('\*.*?\*', '', decoded_output).strip()
|
48 |
if len(parsed_result) != 0: decoded_output = parsed_result
|
49 |
+
decoded_output = " ".join(decoded_output.replace("*","").split())
|
50 |
+
try:
|
51 |
+
parsed_result = decoded_output[:[m.start() for m in re.finditer(r'[.!?]', decoded_output)][-1]+1]
|
52 |
+
if len(parsed_result) != 0: decoded_output = parsed_result
|
53 |
+
except Exception: pass
|
54 |
+
except Exception as e:
|
55 |
+
decoded_output = str(e)
|
56 |
return {
|
57 |
"role": "AI",
|
58 |
"message": decoded_output
|