Katakuri-6b-torch / handler.py
BlueDice's picture
Update handler.py
d33d685
raw
history blame
2.27 kB
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
import time
import torch
class EndpointHandler():
def __init__(self, path = ""):
self.tokenizer = AutoTokenizer.from_pretrained(path)
self.model = torch.load(f"{path}/torch_model.pt")
self.default_template = open(f"{path}/default_template.txt", "r").read()
def __call__(self, data):
request_inputs = data.pop("inputs", data)
template = request_inputs["template"]
messages = request_inputs["messages"]
char_name = request_inputs["char_name"]
user_name = request_inputs["user_name"]
template = self.default_template
user_input = "\n".join([
"{name}: {message}".format(
name = char_name if (id["role"] == "AI") else user_name,
message = id["message"].strip()
) for id in messages
])
prompt = template.format(
char_name = char_name,
user_name = user_name,
user_input = user_input
)
input_ids = self.tokenizer(
prompt + f"\n{char_name}:",
return_tensors = "pt"
).to("cuda")
encoded_output = self.model.generate(
input_ids["input_ids"],
max_new_tokens = 50,
temperature = 0.5,
top_p = 0.9,
top_k = 0,
repetition_penalty = 1.1,
pad_token_id = 50256,
num_return_sequences = 1
)
decoded_output = self.tokenizer.decode(encoded_output[0], skip_special_tokens=True).replace(prompt,"")
decoded_output = decoded_output.split(f"{char_name}:", 1)[1].split(f"{user_name}:",1)[0].strip()
parsed_result = re.sub('\*.*?\*', '', decoded_output).strip()
if len(parsed_result) != 0: decoded_output = parsed_result
decoded_output = " ".join(decoded_output.replace("*","").split())
try:
parsed_result = decoded_output[:[m.start() for m in re.finditer(r'[.!?]', decoded_output)][-1]+1]
if len(parsed_result) != 0: decoded_output = parsed_result
except Exception: pass
return {
"role": "AI",
"message": decoded_output,
"prompt": prompt
}