File size: 1,918 Bytes
62a14f0 78bd8dc d4c23b0 ec798e1 d4c23b0 91f9c84 ec798e1 b1c81ae f149e87 8ac4df3 f149e87 8ac4df3 f149e87 ec798e1 d4c23b0 78bd8dc f149e87 ec798e1 78bd8dc f149e87 ec798e1 78bd8dc ec798e1 f149e87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
from transformers import AutoTokenizer
import re
import torch
def model_fn(model_dir):
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = torch.load(f"{model_dir}/torch_model.pt")
return model, tokenizer
def predict_fn(data, load_list):
model, tokenizer = load_list
request_inputs = data.pop("inputs", data)
template = request_inputs["template"]
messages = request_inputs["messages"]
char_name = request_inputs["char_name"]
user_name = request_inputs["user_name"]
template = open(f"{template}.txt", "r").read()
user_input = "\n".join([
"{name}: {message}".format(
name = char_name if (id["role"] == "AI") else user_name,
message = id["message"].strip()
) for id in messages
])
prompt = template.format(char_name = char_name, user_name = user_name, user_input = user_input)
input_ids = tokenizer(prompt + f"\n{char_name}:", return_tensors = "pt").to("cuda")
encoded_output = model.generate(
input_ids["input_ids"],
max_new_tokens = 50,
temperature = 0.5,
top_p = 0.9,
top_k = 0,
repetition_penalty = 1.1,
pad_token_id = 50256,
num_return_sequences = 1
)
decoded_output = tokenizer.decode(encoded_output[0], skip_special_tokens=True).replace(prompt,"")
decoded_output = decoded_output.split(f"{char_name}:", 1)[1].split(f"{user_name}:",1)[0].strip()
parsed_result = re.sub('\*.*?\*', '', decoded_output).strip()
if len(parsed_result) != 0: decoded_output = parsed_result
decoded_output = " ".join(decoded_output.replace("*","").split())
try:
parsed_result = decoded_output[:[m.start() for m in re.finditer(r'[.!?]', decoded_output)][-1]+1]
if len(parsed_result) != 0: decoded_output = parsed_result
except Exception: pass
return {
"role": "AI",
"message": decoded_output
} |