File size: 1,918 Bytes
62a14f0
78bd8dc
d4c23b0
 
 
ec798e1
 
 
d4c23b0
91f9c84
ec798e1
b1c81ae
f149e87
 
 
 
 
8ac4df3
f149e87
 
 
 
8ac4df3
f149e87
 
ec798e1
d4c23b0
 
 
 
 
 
 
 
 
78bd8dc
f149e87
ec798e1
78bd8dc
f149e87
ec798e1
78bd8dc
 
ec798e1
f149e87
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from transformers import AutoTokenizer
import re
import torch

def model_fn(model_dir):
    tokenizer = AutoTokenizer.from_pretrained(model_dir)
    model = torch.load(f"{model_dir}/torch_model.pt")
    return model, tokenizer

def predict_fn(data, load_list):
    model, tokenizer = load_list
    request_inputs = data.pop("inputs", data)
    template = request_inputs["template"]
    messages = request_inputs["messages"]
    char_name = request_inputs["char_name"]
    user_name = request_inputs["user_name"]
    template = open(f"{template}.txt", "r").read()
    user_input = "\n".join([
        "{name}: {message}".format(
            name = char_name if (id["role"] == "AI") else user_name,
            message = id["message"].strip()
        ) for id in messages
    ])
    prompt = template.format(char_name = char_name, user_name = user_name, user_input = user_input)
    input_ids = tokenizer(prompt + f"\n{char_name}:", return_tensors = "pt").to("cuda")
    encoded_output = model.generate(
        input_ids["input_ids"],
        max_new_tokens = 50,
        temperature = 0.5,
        top_p = 0.9,
        top_k = 0,
        repetition_penalty = 1.1,
        pad_token_id = 50256,
        num_return_sequences = 1
    )
    decoded_output = tokenizer.decode(encoded_output[0], skip_special_tokens=True).replace(prompt,"")
    decoded_output = decoded_output.split(f"{char_name}:", 1)[1].split(f"{user_name}:",1)[0].strip()
    parsed_result = re.sub('\*.*?\*', '', decoded_output).strip()
    if len(parsed_result) != 0: decoded_output = parsed_result
    decoded_output = " ".join(decoded_output.replace("*","").split())
    try:
        parsed_result = decoded_output[:[m.start() for m in re.finditer(r'[.!?]', decoded_output)][-1]+1]
        if len(parsed_result) != 0: decoded_output = parsed_result
    except Exception: pass
    return {
        "role": "AI",
        "message": decoded_output
    }