Update handler.py
Browse files- handler.py +26 -27
handler.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
from transformers import AutoTokenizer
|
2 |
from optimum.onnxruntime import ORTModelForCausalLM
|
|
|
3 |
import re
|
4 |
import time
|
5 |
import torch
|
@@ -19,40 +19,25 @@ Alice Gate: Yeah, it's really fun. I'm lucky to be able to do this as a job.
|
|
19 |
{user_name}: Definetly.
|
20 |
<END>
|
21 |
Alice Gate: *Alice strides into the room with a smile, her eyes lighting up when she sees you. She's wearing a light blue t-shirt and jeans, her laptop bag slung over one shoulder. She takes a seat next to you, her enthusiasm palpable in the air* Hey! I'm so excited to finally meet you. I've heard so many great things about you and I'm eager to pick your brain about computers. I'm sure you have a wealth of knowledge that I can learn from. *She grins, eyes twinkling with excitement* Let's get started!
|
22 |
-
{user_input}
|
23 |
-
Alice Gate:"""
|
24 |
|
25 |
-
class
|
26 |
|
27 |
-
def __init__(self, path
|
28 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
29 |
self.model = ORTModelForCausalLM.from_pretrained(path)#provider = "CUDAExecutionProvider"
|
30 |
-
|
31 |
-
def response(self, result, user_name):
|
32 |
-
result = result.rsplit("Alice Gate:", 1)[1].split(f"{user_name}:",1)[0].strip()
|
33 |
-
parsed_result = re.sub('\*.*?\*', '', result).strip()
|
34 |
-
result = parsed_result if len(parsed_result) != 0 else result.replace("*","")
|
35 |
-
result = " ".join(result.split())
|
36 |
-
try:
|
37 |
-
result = result[:[m.start() for m in re.finditer(r'[.!?]', result)][-1]+1]
|
38 |
-
except Exception: pass
|
39 |
-
return {
|
40 |
-
"message": result
|
41 |
-
}
|
42 |
|
43 |
-
def __call__(self,
|
44 |
-
|
45 |
-
user_name = inputs["user_name"]
|
46 |
-
user_input = "\n".join(inputs["user_input"])
|
47 |
prompt = template.format(
|
48 |
user_name = user_name,
|
49 |
user_input = user_input
|
50 |
)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
generator = self.model.generate(
|
56 |
input_ids["input_ids"],
|
57 |
max_new_tokens = 50,
|
58 |
temperature = 0.5,
|
@@ -62,4 +47,18 @@ class EndpointHandler():
|
|
62 |
pad_token_id = 50256,
|
63 |
num_return_sequences = 1
|
64 |
)
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from optimum.onnxruntime import ORTModelForCausalLM
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import re
|
4 |
import time
|
5 |
import torch
|
|
|
19 |
{user_name}: Definetly.
|
20 |
<END>
|
21 |
Alice Gate: *Alice strides into the room with a smile, her eyes lighting up when she sees you. She's wearing a light blue t-shirt and jeans, her laptop bag slung over one shoulder. She takes a seat next to you, her enthusiasm palpable in the air* Hey! I'm so excited to finally meet you. I've heard so many great things about you and I'm eager to pick your brain about computers. I'm sure you have a wealth of knowledge that I can learn from. *She grins, eyes twinkling with excitement* Let's get started!
|
22 |
+
{user_input}"""
|
|
|
23 |
|
24 |
+
class SweetCommander():
|
25 |
|
26 |
+
def __init__(self, path="") -> None:
|
27 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
28 |
self.model = ORTModelForCausalLM.from_pretrained(path)#provider = "CUDAExecutionProvider"
|
29 |
+
self.star_line = "***********************************************************"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def __call__(self, user_name, user_input):
|
32 |
+
t1 = time.time()
|
|
|
|
|
33 |
prompt = template.format(
|
34 |
user_name = user_name,
|
35 |
user_input = user_input
|
36 |
)
|
37 |
+
print(self.star_line)
|
38 |
+
print(prompt)
|
39 |
+
input_ids = self.tokenizer(prompt + "\nAlice Gate:", return_tensors = "pt")
|
40 |
+
encoded_output = self.model.generate(
|
|
|
41 |
input_ids["input_ids"],
|
42 |
max_new_tokens = 50,
|
43 |
temperature = 0.5,
|
|
|
47 |
pad_token_id = 50256,
|
48 |
num_return_sequences = 1
|
49 |
)
|
50 |
+
decoded_output = self.tokenizer.decode(encoded_output[0], skip_special_tokens = True).replace(prompt, "")
|
51 |
+
decoded_output = decoded_output.split("Alice Gate:", 1)[1].split(f"{user_name}:",1)[0].strip()
|
52 |
+
parsed_result = re.sub('\*.*?\*', '', decoded_output).strip()
|
53 |
+
if len(parsed_result) != 0: decoded_output = parsed_result
|
54 |
+
decoded_output = decoded_output.replace("*","")
|
55 |
+
decoded_output = " ".join(decoded_output.split())
|
56 |
+
try:
|
57 |
+
parsed_result = decoded_output[:[m.start() for m in re.finditer(r'[.!?]', decoded_output)][-1]+1]
|
58 |
+
if len(parsed_result) != 0: decoded_output = parsed_result
|
59 |
+
except Exception: pass
|
60 |
+
print(self.star_line)
|
61 |
+
print("Response:",decoded_output)
|
62 |
+
print("Eval time:",time.time()-t1)
|
63 |
+
print(self.star_line)
|
64 |
+
return decoded_output
|