BleachNick commited on
Commit
ca5a95d
·
1 Parent(s): e4d61b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -155
README.md CHANGED
@@ -11,191 +11,101 @@ library_name: transformers
11
  This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
12
 
13
  ## Model Details
 
 
14
 
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
-
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Data Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
 
 
176
 
177
- [More Information Needed]
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
188
 
189
- ## More Information [optional]
 
 
 
 
 
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
 
201
 
 
11
  This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
12
 
13
  ## Model Details
14
+ **MMICL(Multi-Modal In-Context Learning)** is a multimodal vision-language model that incorporates blip2/instrcutblip.
15
+ It has the ability to analyze and understand multiple images, as well as follow instructions.
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ ### Model Description
19
+ MMICL outperforms the VL model of the same size and performs exceptionally well on complex visual reasoning datasets.
20
+ Till 21st Aug. 2023, it achieves **state-of-the-art ** performance on both multimodal task leaderboards and a wide range of vision-language tasks.
21
+ Furthermore, it showcases new capabilities in video understanding and multimodal in-context learning (M-ICL).
22
+ + <mark>**Capability of multiple images refering and reasoning**<mark>
23
 
24
+ + <mark>**Manually constructed In-context instruction tuning dataset**<mark>
25
 
26
+ + Till 21st Aug. 2023 **1st on [MME](https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation), 1st on [MMBench](https://opencompass.org.cn/leaderboard-multimodal)**
27
 
28
+ + Visual Encoder: VIT-L from CLIP/ ViT-G/14 from EVA-CLIP
29
 
30
+ + Pre-trained LLM: FlanT5-XL/ FlanT5-XXL/ Vicuna-7B/ Vicuna-13B
31
+ <!-- Provide a longer summary of what this model is. -->
32
 
 
33
 
 
34
 
35
+ - **Developed by:** [More Information Needed]
36
+ - **License:** MIT
37
+ - **Finetuned from model :** [instructblip-flan-t5-xxl](https://huggingface.co/Salesforce/instructblip-flan-t5-xxl)
38
 
39
+ <!-- Provide the basic links for the model. -->
40
 
41
+ - **Repository:** [MMICL](https://github.com/HaozheZhao/MIC)
42
 
 
43
 
44
  ## How to Get Started with the Model
45
 
46
+ ```
47
+ # For T5 based model
48
+ from model.instructblip import InstructBlipConfig, InstructBlipModel, InstructBlipPreTrainedModel,InstructBlipForConditionalGeneration,InstructBlipProcessor
49
+ import datasets
50
+ import json
51
+ import transformers
52
+ from PIL import Image
53
+ import torch
54
+ from model.blip2 import Blip2Processor,Blip2ForConditionalGeneration
55
+ from model.blip2 import Blip2Config
56
+ model_type="instructblip"
57
+ model_ckpt="BleachNick/MMICL-Instructblip-T5-xxl"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
+ if 'blip2' in model_type:
60
+ model = Blip2ForConditionalGeneration.from_pretrained(
61
+ model_ckpt,
62
+ config=config).to('cuda:0',dtype=torch.bfloat16)
63
+ elif 'instructblip' in model_type:
64
+ model = InstructBlipForConditionalGeneration.from_pretrained(
65
+ model_ckpt,
66
+ config=config).to('cuda:0',dtype=torch.bfloat16)
67
 
 
68
 
69
+ sp = ["图"]+[f"<image{i}>" for i in range(20)]
70
 
71
+ processor = InstructBlipProcessor.from_pretrained(
72
+ model_ckpt
73
+ )
74
+ # processor = Blip2Processor.from_pretrained(
75
+ # model_ckpt
76
+ # )
77
 
78
+ sp = sp+processor.tokenizer.additional_special_tokens[len(sp):]
79
+ processor.tokenizer.add_special_tokens({'additional_special_tokens':sp})
80
 
 
81
 
82
+ prompt = ['Use the image 0: <image0>图,image 1: <image1>图 and image 2: <image2>图 as a visual aid to help you calculate the equation accurately. image 0 is 2+1=3.\nimage 1 is 5+6=11.\nimage 2 is"']
83
 
84
+ prompt = " ".join(prompt)
85
 
86
+ inputs = processor(images=images, text=prompt, return_tensors="pt")
87
 
88
+ inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
89
+ inputs['img_mask'] = torch.tensor([[1 for i in range(len(images))]])
90
+ inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
91
 
92
+ inputs = inputs.to('cuda:0')
93
+ outputs = model.generate(
94
+ pixel_values = inputs['pixel_values'],
95
+ input_ids = inputs['input_ids'],
96
+ attention_mask = inputs['attention_mask'],
97
+ img_mask = inputs['img_mask']
98
+ )
99
+ generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
100
+ print(generated_text)
101
 
102
+ ```
103
 
104
+ ####
105
+ Training Hyperparameters
106
 
107
+ - **Training regime:** [fp32, bf16 mixed precision, bf16 non-mixed precision] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
108
 
 
109
 
 
110
 
111