BleachNick
commited on
Commit
·
ca5a95d
1
Parent(s):
e4d61b7
Update README.md
Browse files
README.md
CHANGED
@@ -11,191 +11,101 @@ library_name: transformers
|
|
11 |
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
12 |
|
13 |
## Model Details
|
|
|
|
|
14 |
|
15 |
-
### Model Description
|
16 |
-
|
17 |
-
<!-- Provide a longer summary of what this model is. -->
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
- **Developed by:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
|
62 |
-
[More Information Needed]
|
|
|
|
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Data Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
## Citation [optional]
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
|
|
|
178 |
|
179 |
-
**APA:**
|
180 |
|
181 |
-
[
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
[
|
|
|
|
|
188 |
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
|
|
194 |
|
195 |
-
[
|
196 |
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
[More Information Needed]
|
200 |
|
201 |
|
|
|
11 |
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
12 |
|
13 |
## Model Details
|
14 |
+
**MMICL(Multi-Modal In-Context Learning)** is a multimodal vision-language model that incorporates blip2/instrcutblip.
|
15 |
+
It has the ability to analyze and understand multiple images, as well as follow instructions.
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
### Model Description
|
19 |
+
MMICL outperforms the VL model of the same size and performs exceptionally well on complex visual reasoning datasets.
|
20 |
+
Till 21st Aug. 2023, it achieves **state-of-the-art ** performance on both multimodal task leaderboards and a wide range of vision-language tasks.
|
21 |
+
Furthermore, it showcases new capabilities in video understanding and multimodal in-context learning (M-ICL).
|
22 |
+
+ <mark>**Capability of multiple images refering and reasoning**<mark>
|
23 |
|
24 |
+
+ <mark>**Manually constructed In-context instruction tuning dataset**<mark>
|
25 |
|
26 |
+
+ Till 21st Aug. 2023 **1st on [MME](https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation), 1st on [MMBench](https://opencompass.org.cn/leaderboard-multimodal)**
|
27 |
|
28 |
+
+ Visual Encoder: VIT-L from CLIP/ ViT-G/14 from EVA-CLIP
|
29 |
|
30 |
+
+ Pre-trained LLM: FlanT5-XL/ FlanT5-XXL/ Vicuna-7B/ Vicuna-13B
|
31 |
+
<!-- Provide a longer summary of what this model is. -->
|
32 |
|
|
|
33 |
|
|
|
34 |
|
35 |
+
- **Developed by:** [More Information Needed]
|
36 |
+
- **License:** MIT
|
37 |
+
- **Finetuned from model :** [instructblip-flan-t5-xxl](https://huggingface.co/Salesforce/instructblip-flan-t5-xxl)
|
38 |
|
39 |
+
<!-- Provide the basic links for the model. -->
|
40 |
|
41 |
+
- **Repository:** [MMICL](https://github.com/HaozheZhao/MIC)
|
42 |
|
|
|
43 |
|
44 |
## How to Get Started with the Model
|
45 |
|
46 |
+
```
|
47 |
+
# For T5 based model
|
48 |
+
from model.instructblip import InstructBlipConfig, InstructBlipModel, InstructBlipPreTrainedModel,InstructBlipForConditionalGeneration,InstructBlipProcessor
|
49 |
+
import datasets
|
50 |
+
import json
|
51 |
+
import transformers
|
52 |
+
from PIL import Image
|
53 |
+
import torch
|
54 |
+
from model.blip2 import Blip2Processor,Blip2ForConditionalGeneration
|
55 |
+
from model.blip2 import Blip2Config
|
56 |
+
model_type="instructblip"
|
57 |
+
model_ckpt="BleachNick/MMICL-Instructblip-T5-xxl"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
if 'blip2' in model_type:
|
60 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
61 |
+
model_ckpt,
|
62 |
+
config=config).to('cuda:0',dtype=torch.bfloat16)
|
63 |
+
elif 'instructblip' in model_type:
|
64 |
+
model = InstructBlipForConditionalGeneration.from_pretrained(
|
65 |
+
model_ckpt,
|
66 |
+
config=config).to('cuda:0',dtype=torch.bfloat16)
|
67 |
|
|
|
68 |
|
69 |
+
sp = ["图"]+[f"<image{i}>" for i in range(20)]
|
70 |
|
71 |
+
processor = InstructBlipProcessor.from_pretrained(
|
72 |
+
model_ckpt
|
73 |
+
)
|
74 |
+
# processor = Blip2Processor.from_pretrained(
|
75 |
+
# model_ckpt
|
76 |
+
# )
|
77 |
|
78 |
+
sp = sp+processor.tokenizer.additional_special_tokens[len(sp):]
|
79 |
+
processor.tokenizer.add_special_tokens({'additional_special_tokens':sp})
|
80 |
|
|
|
81 |
|
82 |
+
prompt = ['Use the image 0: <image0>图,image 1: <image1>图 and image 2: <image2>图 as a visual aid to help you calculate the equation accurately. image 0 is 2+1=3.\nimage 1 is 5+6=11.\nimage 2 is"']
|
83 |
|
84 |
+
prompt = " ".join(prompt)
|
85 |
|
86 |
+
inputs = processor(images=images, text=prompt, return_tensors="pt")
|
87 |
|
88 |
+
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
|
89 |
+
inputs['img_mask'] = torch.tensor([[1 for i in range(len(images))]])
|
90 |
+
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
|
91 |
|
92 |
+
inputs = inputs.to('cuda:0')
|
93 |
+
outputs = model.generate(
|
94 |
+
pixel_values = inputs['pixel_values'],
|
95 |
+
input_ids = inputs['input_ids'],
|
96 |
+
attention_mask = inputs['attention_mask'],
|
97 |
+
img_mask = inputs['img_mask']
|
98 |
+
)
|
99 |
+
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
|
100 |
+
print(generated_text)
|
101 |
|
102 |
+
```
|
103 |
|
104 |
+
####
|
105 |
+
Training Hyperparameters
|
106 |
|
107 |
+
- **Training regime:** [fp32, bf16 mixed precision, bf16 non-mixed precision] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
108 |
|
|
|
109 |
|
|
|
110 |
|
111 |
|