File size: 12,201 Bytes
e9959b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.utils as vutils
from datasets import load_dataset, load_from_disk
from torch.utils.data import DataLoader, TensorDataset
from torch.utils.tensorboard import SummaryWriter
from safetensors.torch import save_file, load_file
import os, time
from models import AsymmetricResidualUDiT, xATGLU
from torch.cuda.amp import autocast
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.distributions import Normal
from schedulefree import AdamWScheduleFree
from distributed_shampoo import AdamGraftingConfig, DistributedShampoo
# Changes
# MAE replace MSE
# Larger shampoo preconditioner step for stability
# Larger shampoo preconditioner dim 1024 -> 2048
# Commented out norm.
def preload_dataset(image_size=256, device="cuda", max_images=50000):
"""Preload and cache the entire dataset in GPU memory"""
print("Loading and preprocessing dataset...")
dataset = load_dataset("jiovine/pixel-art-nouns-2k", split="train")
#dataset = load_dataset("reach-vb/pokemon-blip-captions", split="train")
#dataset = load_from_disk("./new_dataset")
transform = transforms.Compose([
transforms.ToTensor(),
#transforms.Pad((35, 0), fill=0), # Add 35 pixels on each side horizontally (70 total to get from 186 to 256)
transforms.Resize((256, 256), antialias=True),
transforms.Lambda(lambda x: (x * 2) - 1) # Scale to [-1, 1]
])
all_images = []
for i, example in enumerate(dataset):
if max_images and i >= max_images:
break
img_tensor = transform(example['image'])
all_images.extend([
img_tensor,
])
# Stack entire dataset onto gpu
images_tensor = torch.stack(all_images).to(device)
print(f"Dataset loaded: {images_tensor.shape} ({images_tensor.element_size() * images_tensor.nelement() / 1024/1024:.2f} MB)")
return TensorDataset(images_tensor)
def count_parameters(model):
total_params = sum(p.numel() for p in model.parameters())
print(f'Total parameters: {total_params:,} ({total_params/1e6:.2f}M)')
def save_checkpoint(model, optimizer, filename="checkpoint.safetensors"):
model_state = model.state_dict()
save_file(model_state, filename)
def load_checkpoint(model, optimizer, filename="checkpoint.safetensors"):
model_state = load_file(filename)
model.load_state_dict(model_state)
# https://arxiv.org/abs/2210.02747
class OptimalTransportLinearFlowGenerator():
def __init__(self, sigma_min=0.001):
self.sigma_min = sigma_min
def loss(self, model, x1, device):
batch_size = x1.shape[0]
# Uniform Dist 0..1 -- t ~ U[0, 1]
t = torch.rand(batch_size, 1, 1, 1, device=device)
# Sample noise -- x0 ~ N[0, I]
x0 = torch.randn_like(x1)
# Compute OT conditional flow matching path interpolation
# My understanding of this process -- We start at some random time t (Per sample)
# We have a pure noise value at x0, which is a totally destroyed signal.
# We have the actual image as x1 which is a perfect signal.
# We are going to destroy an amount of the image equal to t% of the signal. So if t is 0.3 we're destroying about 30% of the signal(image)
# The final x_t represents our combined noisy singal, you can imagine 30% random noise overlayed onto the normal image.
# We calculate the shortest path between x0 and x1, a straight line segment (lets call it a displacement vector) in their respective space, conditioned on the timestep.
# We then try to predict the displacement vector where we provide our partially noisy signal and our conditioning timestep
# We check the prediction against the real displacement vector we calculated to see how good the prediction was. Then we back propogate, baby.
sigma_t = 1 - (1 - self.sigma_min) * t # As t increases this value decreases. This is almost 1 - t
mu_t = t * x1 # As t increases this increases.
x_t = sigma_t * x0 + mu_t # This is essentially a mixture of noise and signal ((1-t) * x0) + ((t) * x1)
# Compute target
target = x1 - (1 - self.sigma_min) * x0 # This is the target displacement vector (direction and magnitude) that we need to travel from x0 to x1.
v_t = model(x_t, t) # v_t is our displacement vector prediction
# Magnitude-corrected MSE
# The 69 factor helps with very small gradients, as this loss tends to be b/w [0..1], this rescales to something more like [0..69]
# Other values like 420 might lead to numerical instability if the loss is too large.
loss = F.mse_loss(v_t, target)*69 # Compare the displacement vector the network predicted to the actual displacement we calculated as mean absolute error.
return loss
def write_logs(writer, model, loss, batch_idx, epoch, epoch_time, batch_size, lr, log_gradients=True):
"""
TensorBoard logging
Args:
writer: torch.utils.tensorboard.SummaryWriter instance
model: torch.nn.Module - the model being trained
loss: float or torch.Tensor - the loss value to log
batch_idx: int - current batch index
epoch: int - current epoch
epoch_time: float - time taken for epoch
batch_size: int - current batch size
lr: float - current learning rate
samples: Optional[torch.Tensor] - generated samples to log (only passed every 50 epochs)
log_gradients: bool - whether to log gradient norms
"""
total_steps = epoch * batch_idx
writer.add_scalar('Loss/batch', loss, total_steps)
writer.add_scalar('Time/epoch', epoch_time, epoch)
writer.add_scalar('Training/batch_size', batch_size, epoch)
writer.add_scalar('Training/learning_rate', lr, epoch)
# Gradient logging
if log_gradients:
total_norm = 0.0
for p in model.parameters():
if p.grad is not None:
param_norm = p.grad.detach().data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** 0.5
writer.add_scalar('Gradients/total_norm', total_norm, total_steps)
def train_udit_flow(num_epochs=1000, initial_batch_sizes=[8, 16, 32, 64, 128], epoch_batch_drop_at=40, device="cuda", dtype=torch.float32):
dataset = preload_dataset(device=device)
temp_loader = DataLoader(dataset, batch_size=initial_batch_sizes[0], shuffle=True)
first_batch = next(iter(temp_loader))
image_shape = first_batch[0].shape[1:]
writer = SummaryWriter('logs/current_run')
model = AsymmetricResidualUDiT(
in_channels=3,
base_channels=128,
num_levels=3,
patch_size=4,
encoder_blocks=3,
decoder_blocks=7,
encoder_transformer_thresh=2,
decoder_transformer_thresh=4,
mid_blocks=16
).to(device).to(torch.float32)
model.train()
count_parameters(model)
# optimizer = AdamWScheduleFree(
# model.parameters(),
# lr=4e-5,
# warmup_steps=100
# )
# optimizer.train()
optimizer = DistributedShampoo(
model.parameters(),
lr=0.001,
betas=(0.9, 0.999),
epsilon=1e-10,
weight_decay=1e-05,
max_preconditioner_dim=2048,
precondition_frequency=100,
start_preconditioning_step=250,
use_decoupled_weight_decay=False,
grafting_config=AdamGraftingConfig(
beta2=0.999,
epsilon=1e-10,
),
)
scaler = torch.amp.GradScaler("cuda")
scheduler = CosineAnnealingLR(
optimizer,
T_max=num_epochs,
eta_min=1e-5
)
current_batch_sizes = initial_batch_sizes.copy()
next_drop_epoch = epoch_batch_drop_at
interval_multiplier = 2
torch.set_float32_matmul_precision('high')
# torch.backends.cudnn.benchmark = True
# torch.backends.cuda.matmul.allow_fp16_accumulation = True
model = torch.compile(
model,
backend='inductor',
dynamic=False,
fullgraph=True,
options={
"epilogue_fusion": True,
"max_autotune": True,
"cuda.use_fast_math": True,
}
)
flow_transport = OptimalTransportLinearFlowGenerator(sigma_min=0.001)
current_batch_size = current_batch_sizes[-1]
dataloader = DataLoader(dataset, batch_size=current_batch_size, shuffle=True)
for epoch in range(num_epochs):
epoch_start_time = time.time()
total_loss = 0
# Batch size decay logic
# Geomtric growth, every X*N+(X-1*N+...) use the number batch size in the list.
if False:
if epoch > 0 and epoch == next_drop_epoch and len(current_batch_sizes) > 1:
current_batch_sizes.pop()
next_interval = epoch_batch_drop_at * interval_multiplier
next_drop_epoch += next_interval
interval_multiplier += 1
print(f"\nEpoch {epoch}: Reducing batch size to {current_batch_sizes[-1]}")
print(f"Next drop will occur at epoch {next_drop_epoch} (interval: {next_interval})")
curr_lr = optimizer.param_groups[0]['lr']
for batch_idx, batch in enumerate(dataloader):
optimizer.zero_grad()
with torch.autocast(device_type='cuda', dtype=dtype):
x1 = batch[0]
batch_size = x1.shape[0]
# x1 shape: B, C, H, W
loss = flow_transport.loss(model, x1, device)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
#torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
scaler.step(optimizer)
scaler.update()
total_loss += loss.item()
avg_loss = total_loss / len(dataloader)
epoch_time = time.time() - epoch_start_time
print(f"Epoch {epoch}, Took: {epoch_time:.2f}s, Batch Size: {current_batch_size}, "
f"Average Loss: {avg_loss:.4f}, Learning Rate: {curr_lr:.2e}")
write_logs(writer, model, avg_loss, batch_idx, epoch, epoch_time, current_batch_size, curr_lr)
if (epoch + 1) % 10 == 0:
with torch.amp.autocast('cuda', dtype=dtype):
sampling_start_time = time.time()
samples = sample(model, device=device, dtype=dtype)
os.makedirs("samples", exist_ok=True)
vutils.save_image(samples, f"samples/epoch_{epoch}.png", nrow=4, padding=2)
sample_time = time.time() - sampling_start_time
print(f"Sampling took: {sample_time:.2f}s")
if (epoch + 1) % 50 == 0:
save_checkpoint(model, optimizer, f"step_{epoch}.safetensors")
scheduler.step()
return model
def sample(model, n_samples=16, n_steps=50, image_size=256, device="cuda", sigma_min=0.001, dtype=torch.float32):
with torch.amp.autocast('cuda', dtype=dtype):
x = torch.randn(n_samples, 3, image_size, image_size, device=device)
ts = torch.linspace(0, 1, n_steps, device=device)
dt = 1/n_steps
# Forward Euler Integration step 0..1
with torch.no_grad():
for i in range(len(ts)):
t = ts[i]
t_input = t.repeat(n_samples, 1, 1, 1)
v_t = model(x, t_input)
x = x + v_t * dt
return x.float()
if __name__ == "__main__":
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model = train_udit_flow(
device=device,
initial_batch_sizes=[16,32,64],
epoch_batch_drop_at=100,
dtype=torch.bfloat16
)
print("Training complete! Samples saved in 'samples' directory") |