Bildad commited on
Commit
47e803d
·
verified ·
1 Parent(s): d7fb326

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: transformers
4
+ ---
5
+
6
+ # Swahili-English Translation Model
7
+
8
+ ## Model Details
9
+
10
+ - **Pre-trained Model**: Helsinki-NLP/opus-mt-en-sw
11
+ - **Architecture**: Transformer
12
+ - **Training Data**: Fine-tuned on 1,710,223 English-Swahili sentence pairs
13
+ - **Base Model**: Helsinki-NLP/opus-mt-en-sw
14
+ - **Training Method**: Fine-tuned with an emphasis on bidirectional translation between Swahili and English.
15
+
16
+ ### Model Description
17
+
18
+ This Swahili-English translation model was developed to handle translations between Swahili, one of Africa's most spoken languages, and English. It was fine-tuned on a large dataset of English-Swahili sentence pairs, leveraging the Transformer architecture for effective translation.
19
+
20
+ - **Developed by:** Otieno Bildad Moses
21
+ - **Model Type:** Transformer
22
+ - **Languages:** Swahili, English
23
+ - **License:** Distributed under the MIT License
24
+
25
+ ### Training Data
26
+
27
+ The model was fine-tuned on the following dataset:
28
+
29
+ - **OPUS-HPLT:**
30
+ - **Package**: [en-sw.txt.zip](https://object.pouta.csc.fi/OPUS-HPLT/v1.1/moses/en-sw.txt.zip)
31
+ - **License**: [CC-BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode)
32
+ - **Citation**: Holger Schwenk et al., WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia, arXiv, July 2019.
33
+
34
+ ## Usage
35
+
36
+ ### Using a Pipeline as a High-Level Helper
37
+
38
+ ```python
39
+ from transformers import pipeline
40
+
41
+ # Initialize the translation pipeline
42
+ translator = pipeline("translation", model="Bildad/English-Swahili_Translation")
43
+
44
+ # Translate text
45
+ translation = translator("Habari yako?")[0]
46
+ translated_text = translation["translation_text"]
47
+
48
+ print(translated_text)