File size: 107,064 Bytes
8048f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the --report_to flag to control the integrations used for logging result (for instance --report_to none).
06/10/2024 22:36:58 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: False, 16-bits training: False
06/10/2024 22:36:58 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=2,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=input_length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/NLU/runs/Jun10_22-36-57_tholus-7.int.europe.naverlabs.com,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=3.0,
optim=adamw_torch,
optim_args=None,
output_dir=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/NLU,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=32,
per_device_train_batch_size=8,
predict_with_generate=True,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
resume_from_checkpoint=None,
run_name=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/NLU,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=steps,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
Loading Dataset Infos from /beegfs/scratch/user/blee/hugging-face/models/modules/datasets_modules/datasets/massive_slu/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
06/10/2024 22:36:58 - INFO - datasets.info - Loading Dataset Infos from /beegfs/scratch/user/blee/hugging-face/models/modules/datasets_modules/datasets/massive_slu/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
Overwrite dataset info from restored data version if exists.
06/10/2024 22:36:58 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
06/10/2024 22:36:58 - INFO - datasets.info - Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
Found cached dataset massive_slu (/beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617)
06/10/2024 22:36:58 - INFO - datasets.builder - Found cached dataset massive_slu (/beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617)
Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
06/10/2024 22:36:58 - INFO - datasets.info - Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
[INFO|configuration_utils.py:737] 2024-06-10 22:36:58,618 >> loading configuration file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/config.json
[INFO|configuration_utils.py:802] 2024-06-10 22:36:58,633 >> Model config MT5Config {
  "_name_or_path": "/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407",
  "architectures": [
    "MT5ForConditionalGeneration"
  ],
  "classifier_dropout": 0.0,
  "d_ff": 2048,
  "d_kv": 64,
  "d_model": 768,
  "decoder_start_token_id": 0,
  "dense_act_fn": "gelu_new",
  "dropout": 0.2,
  "dropout_rate": 0.1,
  "eos_token_id": 1,
  "feed_forward_proj": "gated-gelu",
  "initializer_factor": 1.0,
  "is_encoder_decoder": true,
  "is_gated_act": true,
  "layer_norm_epsilon": 1e-06,
  "model_type": "mt5",
  "num_decoder_layers": 12,
  "num_heads": 12,
  "num_layers": 12,
  "output_past": true,
  "pad_token_id": 0,
  "relative_attention_max_distance": 128,
  "relative_attention_num_buckets": 32,
  "tie_word_embeddings": false,
  "tokenizer_class": "T5Tokenizer",
  "torch_dtype": "float32",
  "transformers_version": "4.37.0.dev0",
  "use_cache": true,
  "vocab_size": 250112
}

[INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,656 >> loading file spiece.model
[INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,658 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,660 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,662 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,665 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:3373] 2024-06-10 22:36:59,181 >> loading weights file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/model.safetensors
[INFO|configuration_utils.py:826] 2024-06-10 22:36:59,353 >> Generate config GenerationConfig {
  "decoder_start_token_id": 0,
  "eos_token_id": 1,
  "pad_token_id": 0
}

[INFO|modeling_utils.py:4224] 2024-06-10 22:37:04,608 >> All model checkpoint weights were used when initializing MT5ForConditionalGeneration.

[INFO|modeling_utils.py:4232] 2024-06-10 22:37:04,610 >> All the weights of MT5ForConditionalGeneration were initialized from the model checkpoint at /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407.
If your task is similar to the task the model of the checkpoint was trained on, you can already use MT5ForConditionalGeneration for predictions without further training.
[INFO|configuration_utils.py:779] 2024-06-10 22:37:04,625 >> loading configuration file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/generation_config.json
[INFO|configuration_utils.py:826] 2024-06-10 22:37:04,627 >> Generate config GenerationConfig {
  "decoder_start_token_id": 0,
  "eos_token_id": 1,
  "pad_token_id": 0
}


Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-525dddbb93e613dc.arrow
06/10/2024 22:37:04 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-525dddbb93e613dc.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 10152.18 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 9881.17 examples/s] 

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-0ff2f782f6ce550d.arrow
06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-0ff2f782f6ce550d.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 23379.87 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 22426.85 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-db517c5fbde3f93f.arrow
06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-db517c5fbde3f93f.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 24733.67 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 23464.22 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b1a23ce3c266ed7e.arrow
06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b1a23ce3c266ed7e.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 11672.89 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 11022.17 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-d14f4edcd32d40f9.arrow
06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-d14f4edcd32d40f9.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 12128.52 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 11483.51 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c32b0d4edcd745d1.arrow
06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c32b0d4edcd745d1.arrow

Running tokenizer on prediction dataset:  34%|β–ˆβ–ˆβ–ˆβ–Ž      | 1000/2974 [00:00<00:00, 7372.97 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 13353.47 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-65b7a58a8f4b62ba.arrow
06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-65b7a58a8f4b62ba.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 23271.39 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 21331.30 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-8571e8bc453b7162.arrow
06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-8571e8bc453b7162.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 23459.63 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 18122.89 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c74febb30a64318a.arrow
06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c74febb30a64318a.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 11319.17 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 10715.31 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-4c2b08ae5bc14226.arrow
06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-4c2b08ae5bc14226.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 24163.00 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 20604.87 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-5a36e19b80c96113.arrow
06/10/2024 22:37:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-5a36e19b80c96113.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 20147.34 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 12138.36 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b7c60de80d7c7840.arrow
06/10/2024 22:37:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b7c60de80d7c7840.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 25152.92 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 22962.73 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-ae561d58d8bc6128.arrow
06/10/2024 22:37:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-ae561d58d8bc6128.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 26368.84 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 23629.43 examples/s]
06/10/2024 22:37:09 - WARNING - accelerate.utils.other - Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
06/10/2024 22:37:10 - INFO - __main__ - *** Predict ***
06/10/2024 22:37:10 - INFO - __main__ - *** test_en_US ***
[INFO|trainer.py:718] 2024-06-10 22:37:10,687 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:37:10,695 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:37:10,696 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:37:10,697 >>   Batch size = 32
[WARNING|logging.py:314] 2024-06-10 22:37:10,704 >> You're using a T5TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:20,  4.34it/s]
  3%|β–Ž         | 3/93 [00:00<00:25,  3.51it/s]
  4%|▍         | 4/93 [00:01<00:27,  3.20it/s]
  5%|β–Œ         | 5/93 [00:01<00:32,  2.72it/s]
  6%|β–‹         | 6/93 [00:02<00:32,  2.71it/s]
  8%|β–Š         | 7/93 [00:02<00:31,  2.69it/s]
  9%|β–Š         | 8/93 [00:02<00:32,  2.61it/s]
 10%|β–‰         | 9/93 [00:03<00:33,  2.52it/s]
 11%|β–ˆ         | 10/93 [00:03<00:33,  2.51it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:33,  2.44it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:32,  2.46it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:33,  2.41it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:37,  2.12it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:36,  2.11it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:34,  2.25it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:34,  2.18it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:33,  2.26it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:33,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:32,  2.23it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:32,  2.21it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:09<00:33,  2.14it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:33,  2.10it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:10<00:31,  2.17it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:30,  2.19it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:30,  2.19it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:11<00:28,  2.30it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:11<00:26,  2.41it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:12<00:26,  2.44it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:12<00:25,  2.43it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:13<00:27,  2.25it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:13<00:26,  2.33it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:13<00:26,  2.26it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:14<00:27,  2.15it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:14<00:25,  2.26it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:15<00:23,  2.45it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:15<00:22,  2.52it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:16<00:23,  2.32it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:16<00:22,  2.37it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:16<00:22,  2.39it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:17<00:22,  2.32it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:17<00:22,  2.25it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:18<00:23,  2.10it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:18<00:23,  2.10it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:19<00:21,  2.22it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:19<00:20,  2.27it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:20<00:20,  2.20it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:20<00:19,  2.28it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:20<00:18,  2.41it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:21<00:20,  2.13it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:22<00:20,  2.02it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:22<00:21,  1.95it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:23<00:19,  2.00it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:23<00:20,  1.95it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:23<00:18,  2.10it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:24<00:15,  2.33it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:24<00:16,  2.22it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:25<00:14,  2.35it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:25<00:14,  2.28it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:15,  2.17it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:26<00:13,  2.34it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:14,  2.19it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:27<00:13,  2.27it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:29<00:26,  1.10it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:29<00:21,  1.33it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:30<00:17,  1.55it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:30<00:15,  1.73it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:31<00:15,  1.66it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:31<00:13,  1.80it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:32<00:11,  1.93it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:32<00:10,  2.04it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:33<00:10,  2.03it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:33<00:09,  2.15it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:33<00:08,  2.11it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:34<00:07,  2.31it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:34<00:07,  2.16it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:35<00:07,  2.19it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:35<00:07,  2.11it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:36<00:07,  1.91it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:37<00:07,  1.80it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:37<00:06,  1.97it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:37<00:05,  2.16it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:38<00:04,  2.20it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:38<00:04,  2.06it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:39<00:03,  2.03it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:39<00:03,  2.16it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:40<00:02,  2.17it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:40<00:02,  2.13it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:41<00:01,  2.16it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:41<00:01,  2.20it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:42<00:00,  2.08it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:42<00:00,  2.17it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:42<00:00,  2.18it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:43<00:00,  2.14it/s]
***** predict_test_en_US metrics *****
  predict_ex_match_acc         =     0.7317
  predict_ex_match_acc_stderr  =     0.0081
  predict_intent_acc           =     0.8894
  predict_intent_acc_stderr    =     0.0058
  predict_loss                 =     0.1316
  predict_runtime              = 0:00:44.50
  predict_samples              =       2974
  predict_samples_per_second   =     66.819
  predict_slot_micro_f1        =     0.8224
  predict_slot_micro_f1_stderr =     0.0027
  predict_steps_per_second     =      2.089
06/10/2024 22:37:55 - INFO - __main__ - *** test_es_ES ***
[INFO|trainer.py:718] 2024-06-10 22:37:55,406 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:37:55,409 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:37:55,409 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:37:55,410 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:22,  3.96it/s]
  3%|β–Ž         | 3/93 [00:00<00:27,  3.25it/s]
  4%|▍         | 4/93 [00:01<00:29,  3.01it/s]
  5%|β–Œ         | 5/93 [00:01<00:35,  2.46it/s]
  6%|β–‹         | 6/93 [00:02<00:36,  2.41it/s]
  8%|β–Š         | 7/93 [00:02<00:35,  2.44it/s]
  9%|β–Š         | 8/93 [00:03<00:35,  2.43it/s]
 10%|β–‰         | 9/93 [00:03<00:37,  2.24it/s]
 11%|β–ˆ         | 10/93 [00:04<00:36,  2.27it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:35,  2.32it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:34,  2.33it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:35,  2.27it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:06<00:40,  1.93it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:39,  1.96it/s]
 17%|β–ˆβ–‹        | 16/93 [00:07<00:39,  1.97it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:40,  1.90it/s]
 19%|β–ˆβ–‰        | 18/93 [00:08<00:37,  1.98it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:38,  1.94it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:09<00:36,  2.02it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:37,  1.93it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:10<00:36,  1.93it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:10<00:35,  1.99it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:10<00:32,  2.12it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:12<01:01,  1.11it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:13<00:51,  1.30it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:13<00:42,  1.55it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:14<00:37,  1.73it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:14<00:33,  1.89it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:14<00:31,  1.98it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:15<00:33,  1.86it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:16<00:30,  2.01it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:16<00:30,  1.98it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:17<00:30,  1.93it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:17<00:28,  2.04it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:17<00:25,  2.24it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:18<00:22,  2.47it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:18<00:24,  2.23it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:19<00:23,  2.28it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:19<00:24,  2.14it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:20<00:26,  1.97it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:20<00:27,  1.83it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:21<00:28,  1.78it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:22<00:26,  1.82it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:22<00:24,  1.95it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:22<00:24,  1.94it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:23<00:25,  1.81it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:24<00:23,  1.92it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:24<00:21,  2.03it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:24<00:20,  2.06it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:25<00:21,  2.00it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:26<00:22,  1.86it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:26<00:20,  1.91it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:27<00:20,  1.92it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:27<00:19,  1.98it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:27<00:17,  2.15it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:28<00:17,  2.03it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:28<00:16,  2.07it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:29<00:15,  2.14it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:29<00:16,  2.01it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:30<00:15,  2.08it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:30<00:14,  2.11it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:31<00:14,  2.10it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:33<00:27,  1.06it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:33<00:22,  1.23it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:34<00:20,  1.34it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:34<00:17,  1.52it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:35<00:16,  1.49it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:36<00:14,  1.62it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:36<00:13,  1.72it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:37<00:12,  1.80it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:37<00:11,  1.86it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:38<00:10,  1.91it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:38<00:09,  1.91it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:39<00:08,  2.03it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:39<00:08,  2.07it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:39<00:07,  2.20it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:40<00:06,  2.29it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:40<00:07,  1.95it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:41<00:07,  1.86it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:42<00:06,  1.93it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:42<00:05,  2.11it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:42<00:04,  2.06it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:43<00:04,  1.88it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:44<00:04,  1.99it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:44<00:03,  2.09it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:44<00:02,  2.01it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:45<00:02,  2.00it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:45<00:01,  2.04it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:46<00:01,  2.09it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:46<00:01,  2.00it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:47<00:00,  2.03it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:47<00:00,  2.13it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:48<00:00,  1.94it/s]
***** predict_test_es_ES metrics *****
  predict_ex_match_acc         =     0.6722
  predict_ex_match_acc_stderr  =     0.0086
  predict_intent_acc           =     0.8692
  predict_intent_acc_stderr    =     0.0062
  predict_loss                 =      0.159
  predict_runtime              = 0:00:48.47
  predict_samples              =       2974
  predict_samples_per_second   =     61.347
  predict_slot_micro_f1        =       0.76
  predict_slot_micro_f1_stderr =     0.0029
  predict_steps_per_second     =      1.918
06/10/2024 22:38:44 - INFO - __main__ - *** test_de_DE ***
[INFO|trainer.py:718] 2024-06-10 22:38:44,125 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:38:44,127 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:38:44,128 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:38:44,128 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:20,  4.47it/s]
  3%|β–Ž         | 3/93 [00:00<00:24,  3.64it/s]
  4%|▍         | 4/93 [00:01<00:26,  3.31it/s]
  5%|β–Œ         | 5/93 [00:01<00:30,  2.91it/s]
  6%|β–‹         | 6/93 [00:01<00:31,  2.74it/s]
  8%|β–Š         | 7/93 [00:02<00:31,  2.69it/s]
  9%|β–Š         | 8/93 [00:02<00:31,  2.66it/s]
 10%|β–‰         | 9/93 [00:03<00:33,  2.54it/s]
 11%|β–ˆ         | 10/93 [00:03<00:32,  2.53it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:32,  2.55it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:31,  2.56it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:32,  2.49it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:36,  2.14it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:36,  2.16it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:32,  2.34it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:34,  2.22it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:32,  2.29it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:32,  2.29it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:30,  2.38it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:29,  2.46it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:30,  2.29it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:31,  2.26it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:29,  2.35it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:30,  2.25it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:30,  2.22it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:28,  2.33it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:11<00:26,  2.47it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:11<00:25,  2.51it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:12<00:25,  2.49it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:12<00:25,  2.40it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:12<00:25,  2.39it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:13<00:27,  2.22it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:13<00:25,  2.27it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:14<00:24,  2.32it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:14<00:22,  2.48it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:14<00:21,  2.64it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:15<00:22,  2.49it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:15<00:21,  2.49it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:16<00:21,  2.45it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:16<00:22,  2.33it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:17<00:24,  2.11it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:17<00:24,  2.03it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:18<00:23,  2.13it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:18<00:21,  2.25it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:19<00:20,  2.31it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:19<00:21,  2.19it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:20<00:19,  2.26it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:20<00:19,  2.30it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:20<00:18,  2.31it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:21<00:17,  2.42it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:21<00:19,  2.15it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:22<00:18,  2.14it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:22<00:18,  2.06it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:23<00:17,  2.18it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:23<00:16,  2.30it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:24<00:16,  2.20it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:24<00:15,  2.28it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:24<00:15,  2.22it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:25<00:15,  2.13it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:25<00:14,  2.27it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:26<00:14,  2.14it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:26<00:13,  2.29it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:28<00:26,  1.10it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:29<00:20,  1.35it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:29<00:17,  1.57it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:14,  1.77it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:30<00:13,  1.92it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:30<00:12,  1.91it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:31<00:11,  2.05it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:31<00:10,  2.15it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:32<00:10,  2.08it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:32<00:08,  2.27it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:32<00:08,  2.22it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:33<00:08,  2.21it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:33<00:07,  2.17it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:34<00:07,  2.20it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:34<00:06,  2.23it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:35<00:07,  1.95it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:35<00:06,  1.95it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:36<00:05,  2.04it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:36<00:04,  2.22it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:37<00:04,  2.22it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:37<00:04,  2.20it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:38<00:03,  2.24it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:38<00:03,  2.31it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:38<00:02,  2.23it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:39<00:02,  2.24it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:39<00:01,  2.19it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:40<00:01,  2.33it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:40<00:00,  2.16it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:41<00:00,  2.23it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.23it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.22it/s]
***** predict_test_de_DE metrics *****
  predict_ex_match_acc         =      0.696
  predict_ex_match_acc_stderr  =     0.0084
  predict_intent_acc           =     0.8665
  predict_intent_acc_stderr    =     0.0062
  predict_loss                 =     0.1518
  predict_runtime              = 0:00:42.34
  predict_samples              =       2974
  predict_samples_per_second   =     70.231
  predict_slot_micro_f1        =     0.7999
  predict_slot_micro_f1_stderr =     0.0029
  predict_steps_per_second     =      2.196
06/10/2024 22:39:26 - INFO - __main__ - *** test_fr_FR ***
[INFO|trainer.py:718] 2024-06-10 22:39:26,669 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:39:26,671 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:39:26,672 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:39:26,672 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:22,  4.11it/s]
  3%|β–Ž         | 3/93 [00:00<00:30,  2.95it/s]
  4%|▍         | 4/93 [00:01<00:33,  2.65it/s]
  5%|β–Œ         | 5/93 [00:01<00:38,  2.30it/s]
  6%|β–‹         | 6/93 [00:02<00:36,  2.37it/s]
  8%|β–Š         | 7/93 [00:02<00:38,  2.23it/s]
  9%|β–Š         | 8/93 [00:03<00:37,  2.27it/s]
 10%|β–‰         | 9/93 [00:03<00:37,  2.26it/s]
 11%|β–ˆ         | 10/93 [00:04<00:38,  2.17it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:37,  2.20it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:05<00:36,  2.22it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:36,  2.19it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:06<00:41,  1.89it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:40,  1.91it/s]
 17%|β–ˆβ–‹        | 16/93 [00:07<00:37,  2.03it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:39,  1.91it/s]
 19%|β–ˆβ–‰        | 18/93 [00:08<00:37,  1.98it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:37,  1.98it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:09<00:36,  2.03it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:35,  2.04it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:10<00:35,  1.99it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:10<00:33,  2.06it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:11<00:33,  2.09it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:11<00:35,  1.92it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:12<00:36,  1.85it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:12<00:32,  2.05it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:13<00:30,  2.13it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:30,  2.11it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:14<00:28,  2.21it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:28,  2.19it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:28,  2.13it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:28,  2.08it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:28,  2.09it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:16<00:26,  2.20it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:25,  2.25it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:17<00:23,  2.39it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:17<00:26,  2.06it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:18<00:24,  2.17it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:18<00:24,  2.18it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:19<00:24,  2.10it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:19<00:26,  1.89it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:20<00:27,  1.82it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:20<00:26,  1.86it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:21<00:23,  2.00it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:21<00:23,  1.98it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:22<00:23,  1.99it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:22<00:21,  2.10it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:23<00:20,  2.14it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:23<00:20,  2.12it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:24<00:20,  2.04it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:24<00:19,  2.08it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:25<00:19,  2.07it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:25<00:19,  2.03it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:26<00:19,  1.95it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:26<00:17,  2.15it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:26<00:15,  2.28it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:27<00:15,  2.27it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:27<00:15,  2.18it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:28<00:15,  2.16it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:28<00:13,  2.31it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:29<00:14,  2.14it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:29<00:14,  2.06it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:31<00:27,  1.04it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:32<00:23,  1.21it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:32<00:19,  1.39it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:33<00:16,  1.56it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:33<00:16,  1.56it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:34<00:13,  1.74it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:34<00:12,  1.88it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:35<00:11,  1.96it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:35<00:11,  1.90it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:36<00:10,  1.98it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:36<00:09,  2.08it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:37<00:07,  2.25it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:37<00:07,  2.16it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:38<00:07,  2.17it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:38<00:07,  2.08it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:39<00:06,  2.12it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:40<00:11,  1.11it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:41<00:09,  1.29it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:41<00:07,  1.50it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:42<00:06,  1.64it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:42<00:05,  1.72it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:43<00:04,  1.82it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:43<00:03,  1.95it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:44<00:03,  1.89it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:44<00:02,  1.92it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:45<00:02,  1.98it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:45<00:01,  2.10it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:46<00:00,  2.00it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:46<00:00,  2.07it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:47<00:00,  2.07it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:47<00:00,  1.96it/s]
***** predict_test_fr_FR metrics *****
  predict_ex_match_acc         =     0.6725
  predict_ex_match_acc_stderr  =     0.0086
  predict_intent_acc           =     0.8716
  predict_intent_acc_stderr    =     0.0061
  predict_loss                 =     0.1494
  predict_runtime              = 0:00:47.79
  predict_samples              =       2974
  predict_samples_per_second   =     62.224
  predict_slot_micro_f1        =       0.76
  predict_slot_micro_f1_stderr =     0.0029
  predict_steps_per_second     =      1.946
06/10/2024 22:40:14 - INFO - __main__ - *** test_pt_PT ***
[INFO|trainer.py:718] 2024-06-10 22:40:14,689 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:40:14,691 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:40:14,692 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:40:14,692 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:24,  3.77it/s]
  3%|β–Ž         | 3/93 [00:00<00:28,  3.12it/s]
  4%|▍         | 4/93 [00:01<00:29,  3.00it/s]
  5%|β–Œ         | 5/93 [00:01<00:34,  2.52it/s]
  6%|β–‹         | 6/93 [00:02<00:35,  2.42it/s]
  8%|β–Š         | 7/93 [00:02<00:39,  2.17it/s]
  9%|β–Š         | 8/93 [00:03<00:37,  2.25it/s]
 10%|β–‰         | 9/93 [00:03<00:38,  2.18it/s]
 11%|β–ˆ         | 10/93 [00:04<00:38,  2.17it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:38,  2.15it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:05<00:36,  2.20it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:36,  2.17it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:06<00:40,  1.96it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:38,  2.03it/s]
 17%|β–ˆβ–‹        | 16/93 [00:07<00:36,  2.13it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:37,  2.04it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:34,  2.18it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:34,  2.15it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:32,  2.24it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:31,  2.30it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:09<00:32,  2.17it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:10<00:32,  2.17it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:10<00:30,  2.25it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:11<00:31,  2.19it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:11<00:30,  2.21it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:12<00:29,  2.24it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:12<00:28,  2.32it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:12<00:27,  2.31it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:13<00:28,  2.24it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:13<00:27,  2.29it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:27,  2.26it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:14<00:26,  2.23it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:29,  2.02it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:15<00:27,  2.11it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:15<00:24,  2.33it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:16<00:23,  2.39it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:16<00:25,  2.18it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:17<00:23,  2.25it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:17<00:24,  2.19it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:26,  1.99it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:19<00:26,  1.92it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:27,  1.81it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:20<00:25,  1.91it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:20<00:23,  2.07it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:21<00:23,  2.01it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:21<00:24,  1.86it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:22<00:23,  1.91it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:22<00:20,  2.14it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:23<00:21,  2.00it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:23<00:20,  2.02it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:24<00:20,  1.99it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:24<00:20,  1.99it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:25<00:20,  1.87it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:25<00:20,  1.88it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:26<00:17,  2.12it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:26<00:16,  2.15it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:26<00:15,  2.24it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:27<00:15,  2.23it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:27<00:15,  2.11it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:28<00:14,  2.29it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:28<00:14,  2.19it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:29<00:13,  2.19it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:31<00:27,  1.07it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:31<00:22,  1.27it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:32<00:20,  1.35it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:32<00:17,  1.52it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:33<00:17,  1.47it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:34<00:15,  1.59it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:34<00:14,  1.63it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:35<00:12,  1.78it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:35<00:11,  1.86it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:35<00:09,  2.02it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:36<00:09,  2.00it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:36<00:08,  2.09it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:37<00:08,  2.08it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:37<00:07,  2.13it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:38<00:07,  2.12it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:38<00:06,  2.02it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:39<00:06,  1.87it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:39<00:06,  1.87it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:40<00:05,  2.03it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:40<00:04,  2.04it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:41<00:04,  1.94it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:41<00:03,  2.03it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:42<00:03,  2.15it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:42<00:02,  2.11it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:43<00:02,  2.05it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:43<00:01,  2.00it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:44<00:01,  2.06it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:44<00:01,  2.00it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:45<00:00,  2.08it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:45<00:00,  2.19it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:45<00:00,  2.03it/s]
***** predict_test_pt_PT metrics *****
  predict_ex_match_acc         =      0.688
  predict_ex_match_acc_stderr  =     0.0085
  predict_intent_acc           =     0.8742
  predict_intent_acc_stderr    =     0.0061
  predict_loss                 =     0.1455
  predict_runtime              = 0:00:46.29
  predict_samples              =       2974
  predict_samples_per_second   =      64.24
  predict_slot_micro_f1        =      0.777
  predict_slot_micro_f1_stderr =     0.0029
  predict_steps_per_second     =      2.009
06/10/2024 22:41:01 - INFO - __main__ - *** test_pl_PL ***
[INFO|trainer.py:718] 2024-06-10 22:41:01,217 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:41:01,222 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:41:01,222 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:41:01,223 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:14,  6.19it/s]
  3%|β–Ž         | 3/93 [00:00<00:22,  4.04it/s]
  4%|▍         | 4/93 [00:01<00:24,  3.63it/s]
  5%|β–Œ         | 5/93 [00:01<00:32,  2.71it/s]
  6%|β–‹         | 6/93 [00:01<00:32,  2.67it/s]
  8%|β–Š         | 7/93 [00:02<00:32,  2.64it/s]
  9%|β–Š         | 8/93 [00:02<00:32,  2.60it/s]
 10%|β–‰         | 9/93 [00:03<00:32,  2.62it/s]
 11%|β–ˆ         | 10/93 [00:03<00:31,  2.62it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:33,  2.44it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:33,  2.44it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:32,  2.45it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:35,  2.26it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:34,  2.26it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:32,  2.37it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:33,  2.28it/s]
 19%|β–ˆβ–‰        | 18/93 [00:06<00:31,  2.37it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:31,  2.34it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:29,  2.49it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:28,  2.52it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:30,  2.33it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:28,  2.42it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:29,  2.36it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:33,  2.05it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:33,  2.00it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:11<00:30,  2.16it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:11<00:28,  2.31it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:11<00:26,  2.44it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:12<00:27,  2.32it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:12<00:26,  2.37it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:12<00:24,  2.44it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:13<00:24,  2.40it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:13<00:24,  2.44it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:14<00:22,  2.55it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:14<00:20,  2.76it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:14<00:19,  2.89it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:15<00:21,  2.57it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:15<00:20,  2.66it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:16<00:20,  2.58it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:16<00:21,  2.42it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:16<00:21,  2.41it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:17<00:23,  2.13it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:17<00:21,  2.26it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:18<00:20,  2.39it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:18<00:20,  2.28it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:19<00:20,  2.23it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:19<00:19,  2.29it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:19<00:18,  2.44it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:20<00:18,  2.32it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:20<00:18,  2.25it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:21<00:19,  2.14it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:21<00:18,  2.12it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:22<00:17,  2.21it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:22<00:15,  2.38it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:22<00:14,  2.57it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:23<00:14,  2.52it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:23<00:13,  2.61it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:24<00:13,  2.58it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:24<00:13,  2.48it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:24<00:12,  2.51it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:25<00:13,  2.31it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:25<00:12,  2.44it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:27<00:25,  1.12it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:20,  1.34it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:28<00:17,  1.57it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:14,  1.76it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:29<00:14,  1.72it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:30<00:12,  1.90it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:30<00:11,  2.04it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:30<00:10,  2.09it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:31<00:10,  2.09it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:31<00:08,  2.25it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:32<00:08,  2.21it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:32<00:07,  2.40it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:33<00:07,  2.36it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:33<00:06,  2.50it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:33<00:05,  2.68it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:34<00:06,  2.25it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:34<00:06,  2.01it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:35<00:05,  2.18it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:35<00:04,  2.33it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:36<00:04,  2.39it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:36<00:04,  2.21it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:37<00:03,  2.19it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:37<00:03,  2.30it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:37<00:02,  2.36it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:38<00:02,  2.41it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:38<00:01,  2.35it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:39<00:01,  2.42it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:39<00:00,  2.30it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:39<00:00,  2.29it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.45it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.30it/s]
***** predict_test_pl_PL metrics *****
  predict_ex_match_acc         =     0.6577
  predict_ex_match_acc_stderr  =     0.0087
  predict_intent_acc           =     0.8753
  predict_intent_acc_stderr    =     0.0061
  predict_loss                 =     0.1657
  predict_runtime              = 0:00:41.03
  predict_samples              =       2974
  predict_samples_per_second   =     72.472
  predict_slot_micro_f1        =     0.7381
  predict_slot_micro_f1_stderr =     0.0034
  predict_steps_per_second     =      2.266
06/10/2024 22:41:42 - INFO - __main__ - *** test_nl_NL ***
[INFO|trainer.py:718] 2024-06-10 22:41:42,453 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:41:42,456 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:41:42,456 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:41:42,457 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:22,  4.13it/s]
  3%|β–Ž         | 3/93 [00:00<00:26,  3.35it/s]
  4%|▍         | 4/93 [00:01<00:28,  3.15it/s]
  5%|β–Œ         | 5/93 [00:01<00:33,  2.60it/s]
  6%|β–‹         | 6/93 [00:02<00:33,  2.60it/s]
  8%|β–Š         | 7/93 [00:02<00:32,  2.63it/s]
  9%|β–Š         | 8/93 [00:02<00:33,  2.57it/s]
 10%|β–‰         | 9/93 [00:03<00:34,  2.45it/s]
 11%|β–ˆ         | 10/93 [00:03<00:33,  2.48it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:32,  2.49it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:32,  2.46it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:33,  2.41it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:35,  2.20it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:35,  2.22it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:35,  2.19it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:35,  2.16it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:35,  2.11it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:34,  2.14it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:33,  2.19it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:31,  2.28it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:09<00:33,  2.14it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:31,  2.26it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:29,  2.37it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:29,  2.33it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:29,  2.28it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:11<00:28,  2.33it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:11<00:27,  2.37it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:12<00:26,  2.41it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:12<00:27,  2.30it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:13<00:29,  2.09it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:13<00:29,  2.04it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:14<00:29,  2.01it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:14<00:28,  2.09it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:15<00:27,  2.14it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:15<00:24,  2.31it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:15<00:23,  2.41it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:16<00:24,  2.26it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:16<00:24,  2.21it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:17<00:23,  2.23it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:17<00:23,  2.24it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:18<00:24,  2.08it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:18<00:26,  1.91it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:19<00:23,  2.06it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:19<00:22,  2.17it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:20<00:22,  2.06it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:20<00:22,  2.03it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:21,  2.13it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:21<00:19,  2.22it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:19,  2.18it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:22<00:19,  2.17it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:22<00:18,  2.19it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:23<00:19,  2.06it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:23<00:18,  2.09it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:24<00:18,  2.08it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:24<00:17,  2.13it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:25<00:17,  2.08it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:25<00:15,  2.21it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:26<00:15,  2.19it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:15,  2.15it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:27<00:13,  2.29it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:14,  2.13it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:28<00:13,  2.16it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:30<00:26,  1.08it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:30<00:21,  1.29it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:30<00:18,  1.49it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:31<00:16,  1.60it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:31<00:14,  1.73it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:32<00:12,  1.85it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:32<00:12,  1.88it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:33<00:10,  2.02it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:33<00:10,  1.97it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:34<00:09,  2.12it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:34<00:09,  2.01it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:35<00:08,  2.13it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:35<00:08,  2.11it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:36<00:07,  2.17it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:36<00:07,  2.11it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:37<00:07,  1.87it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:37<00:07,  1.74it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:38<00:06,  1.87it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:38<00:05,  2.07it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:39<00:04,  2.15it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:39<00:04,  1.99it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:40<00:03,  2.10it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:40<00:03,  2.19it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:41<00:02,  2.14it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:41<00:02,  2.22it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:41<00:01,  2.19it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:42<00:01,  2.26it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:42<00:00,  2.08it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:43<00:00,  2.13it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:43<00:00,  2.17it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:44<00:00,  2.11it/s]
***** predict_test_nl_NL metrics *****
  predict_ex_match_acc         =     0.6974
  predict_ex_match_acc_stderr  =     0.0084
  predict_intent_acc           =     0.8769
  predict_intent_acc_stderr    =      0.006
  predict_loss                 =     0.1494
  predict_runtime              = 0:00:44.48
  predict_samples              =       2974
  predict_samples_per_second   =     66.861
  predict_slot_micro_f1        =     0.7816
  predict_slot_micro_f1_stderr =     0.0029
  predict_steps_per_second     =      2.091
06/10/2024 22:42:27 - INFO - __main__ - *** test_hu_HU ***
[INFO|trainer.py:718] 2024-06-10 22:42:27,132 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:42:27,134 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:42:27,134 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:42:27,135 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:20,  4.36it/s]
  3%|β–Ž         | 3/93 [00:00<00:25,  3.54it/s]
  4%|▍         | 4/93 [00:01<00:29,  3.05it/s]
  5%|β–Œ         | 5/93 [00:01<00:32,  2.67it/s]
  6%|β–‹         | 6/93 [00:02<00:32,  2.64it/s]
  8%|β–Š         | 7/93 [00:02<00:32,  2.63it/s]
  9%|β–Š         | 8/93 [00:02<00:33,  2.53it/s]
 10%|β–‰         | 9/93 [00:03<00:34,  2.42it/s]
 11%|β–ˆ         | 10/93 [00:03<00:33,  2.50it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:35,  2.31it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:33,  2.44it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:32,  2.46it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:35,  2.24it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:33,  2.33it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:31,  2.45it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:33,  2.29it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:31,  2.40it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:30,  2.40it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:30,  2.40it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:28,  2.55it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:29,  2.39it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:28,  2.47it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:26,  2.57it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:30,  2.25it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:27,  2.42it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:26,  2.47it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:11<00:25,  2.56it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:11<00:24,  2.56it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:12<00:29,  2.16it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:12<00:28,  2.17it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:13<00:26,  2.26it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:13<00:27,  2.21it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:13<00:26,  2.19it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:14<00:25,  2.26it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:14<00:23,  2.46it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:14<00:20,  2.76it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:15<00:21,  2.54it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:15<00:20,  2.62it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:16<00:20,  2.63it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:16<00:20,  2.51it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:17<00:21,  2.34it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:17<00:21,  2.31it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:17<00:20,  2.40it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:18<00:19,  2.41it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:18<00:19,  2.36it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:19<00:21,  2.17it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:19<00:19,  2.36it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:19<00:17,  2.54it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:20<00:17,  2.50it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:20<00:16,  2.52it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:21<00:16,  2.44it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:21<00:17,  2.33it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:22<00:17,  2.21it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:22<00:17,  2.19it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:22<00:15,  2.40it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:23<00:15,  2.36it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:23<00:13,  2.54it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:24<00:12,  2.69it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:24<00:12,  2.65it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:24<00:12,  2.64it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:25<00:12,  2.42it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:25<00:12,  2.50it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:27<00:25,  1.12it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:20,  1.35it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:28<00:17,  1.57it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:28<00:14,  1.77it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:29<00:13,  1.88it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:29<00:11,  2.12it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:30<00:09,  2.34it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:30<00:09,  2.40it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:30<00:09,  2.25it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:31<00:08,  2.46it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:31<00:08,  2.25it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:32<00:07,  2.42it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:32<00:07,  2.35it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:32<00:06,  2.45it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:33<00:05,  2.58it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:33<00:06,  2.12it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:34<00:06,  1.98it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:34<00:05,  2.18it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:35<00:04,  2.35it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:35<00:04,  2.35it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:36<00:04,  2.19it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:36<00:03,  2.25it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:37<00:03,  2.30it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:37<00:02,  2.28it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:37<00:02,  2.28it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:38<00:01,  2.22it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:38<00:01,  2.25it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:39<00:00,  2.10it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:39<00:00,  2.18it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.29it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.29it/s]
***** predict_test_hu_HU metrics *****
  predict_ex_match_acc         =     0.6866
  predict_ex_match_acc_stderr  =     0.0085
  predict_intent_acc           =     0.8668
  predict_intent_acc_stderr    =     0.0062
  predict_loss                 =     0.1564
  predict_runtime              = 0:00:41.00
  predict_samples              =       2974
  predict_samples_per_second   =     72.526
  predict_slot_micro_f1        =     0.7878
  predict_slot_micro_f1_stderr =     0.0031
  predict_steps_per_second     =      2.268
06/10/2024 22:43:08 - INFO - __main__ - *** test_ru_RU ***
[INFO|trainer.py:718] 2024-06-10 22:43:08,343 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:43:08,345 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:43:08,345 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:43:08,346 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:18,  4.79it/s]
  3%|β–Ž         | 3/93 [00:00<00:24,  3.73it/s]
  4%|▍         | 4/93 [00:01<00:26,  3.39it/s]
  5%|β–Œ         | 5/93 [00:01<00:29,  2.95it/s]
  6%|β–‹         | 6/93 [00:01<00:30,  2.83it/s]
  8%|β–Š         | 7/93 [00:02<00:31,  2.70it/s]
  9%|β–Š         | 8/93 [00:02<00:32,  2.65it/s]
 10%|β–‰         | 9/93 [00:03<00:32,  2.58it/s]
 11%|β–ˆ         | 10/93 [00:03<00:33,  2.49it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:32,  2.53it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:32,  2.52it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:31,  2.52it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:36,  2.19it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:35,  2.22it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:32,  2.35it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:33,  2.26it/s]
 19%|β–ˆβ–‰        | 18/93 [00:06<00:31,  2.35it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:31,  2.38it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:29,  2.44it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:28,  2.50it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:31,  2.28it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:30,  2.33it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:28,  2.43it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:30,  2.22it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:30,  2.21it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:28,  2.32it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:11<00:27,  2.40it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:11<00:25,  2.48it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:12<00:25,  2.45it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:12<00:26,  2.35it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:12<00:25,  2.42it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:13<00:24,  2.47it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:13<00:25,  2.34it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:14<00:24,  2.39it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:14<00:22,  2.54it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:14<00:20,  2.76it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:15<00:21,  2.56it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:15<00:21,  2.52it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:16<00:22,  2.36it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:16<00:22,  2.30it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:17<00:21,  2.32it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:17<00:23,  2.12it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:17<00:21,  2.27it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:18<00:21,  2.27it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:18<00:20,  2.28it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:19<00:24,  1.85it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:19<00:21,  2.06it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:20<00:19,  2.24it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:20<00:18,  2.27it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:21<00:19,  2.20it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:21<00:18,  2.17it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:22<00:19,  2.07it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:22<00:18,  2.06it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:23<00:17,  2.12it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:23<00:15,  2.35it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:23<00:15,  2.37it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:24<00:13,  2.52it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:24<00:14,  2.40it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:25<00:14,  2.36it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:25<00:13,  2.44it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:25<00:13,  2.31it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:26<00:12,  2.31it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:28<00:26,  1.10it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:21,  1.33it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:29<00:17,  1.56it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:14,  1.76it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:30<00:14,  1.76it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:30<00:13,  1.84it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:31<00:11,  1.92it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:31<00:10,  2.05it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:32<00:10,  2.06it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:32<00:08,  2.26it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:32<00:09,  2.06it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:33<00:08,  2.22it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:33<00:07,  2.15it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:34<00:07,  2.11it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:34<00:07,  2.02it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:35<00:07,  1.98it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:35<00:06,  1.95it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:36<00:06,  1.86it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:36<00:05,  2.08it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:37<00:04,  2.23it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:37<00:04,  2.17it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:38<00:03,  2.16it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:38<00:03,  2.25it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:39<00:02,  2.25it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:39<00:02,  2.15it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:40<00:01,  2.12it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:40<00:01,  2.18it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:41<00:00,  2.05it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:41<00:00,  2.15it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.32it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.21it/s]
***** predict_test_ru_RU metrics *****
  predict_ex_match_acc         =     0.7028
  predict_ex_match_acc_stderr  =     0.0084
  predict_intent_acc           =     0.8769
  predict_intent_acc_stderr    =      0.006
  predict_loss                 =     0.1495
  predict_runtime              = 0:00:42.44
  predict_samples              =       2974
  predict_samples_per_second   =     70.064
  predict_slot_micro_f1        =     0.7874
  predict_slot_micro_f1_stderr =     0.0031
  predict_steps_per_second     =      2.191
06/10/2024 22:43:50 - INFO - __main__ - *** test_tr_TR ***
[INFO|trainer.py:718] 2024-06-10 22:43:50,993 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:43:50,995 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:43:50,996 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:43:50,996 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:17,  5.33it/s]
  3%|β–Ž         | 3/93 [00:00<00:23,  3.85it/s]
  4%|▍         | 4/93 [00:01<00:24,  3.70it/s]
  5%|β–Œ         | 5/93 [00:01<00:28,  3.10it/s]
  6%|β–‹         | 6/93 [00:01<00:29,  2.96it/s]
  8%|β–Š         | 7/93 [00:02<00:30,  2.80it/s]
  9%|β–Š         | 8/93 [00:02<00:29,  2.87it/s]
 10%|β–‰         | 9/93 [00:03<00:32,  2.55it/s]
 11%|β–ˆ         | 10/93 [00:03<00:33,  2.47it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:33,  2.48it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:31,  2.55it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:32,  2.49it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:35,  2.23it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:36,  2.12it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:34,  2.25it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:33,  2.30it/s]
 19%|β–ˆβ–‰        | 18/93 [00:06<00:31,  2.39it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:31,  2.37it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:28,  2.53it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:27,  2.59it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:29,  2.41it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:08<00:28,  2.47it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:28,  2.43it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:09<00:27,  2.49it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:27,  2.42it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:26,  2.45it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:10<00:24,  2.65it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:11<00:23,  2.75it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:11<00:23,  2.70it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:11<00:23,  2.59it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:12<00:23,  2.63it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:12<00:23,  2.56it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:13<00:23,  2.54it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:13<00:22,  2.61it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:13<00:20,  2.79it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:14<00:18,  3.07it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:14<00:20,  2.71it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:14<00:19,  2.74it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:15<00:19,  2.67it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:15<00:20,  2.58it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:16<00:20,  2.48it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:16<00:22,  2.24it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:17<00:20,  2.34it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:17<00:19,  2.49it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:17<00:19,  2.45it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:18<00:19,  2.41it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:18<00:18,  2.41it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:19<00:17,  2.58it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:19<00:18,  2.32it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:19<00:17,  2.37it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:20<00:17,  2.35it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:20<00:18,  2.17it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:21<00:18,  2.10it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:21<00:17,  2.22it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:22<00:15,  2.41it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:22<00:14,  2.44it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:22<00:13,  2.60it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:23<00:12,  2.72it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:23<00:13,  2.52it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:24<00:12,  2.56it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:24<00:13,  2.36it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:25<00:13,  2.30it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:27<00:26,  1.11it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:27<00:20,  1.36it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:27<00:16,  1.59it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:28<00:14,  1.78it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:28<00:13,  1.81it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:29<00:12,  1.96it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:29<00:11,  2.09it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:29<00:09,  2.20it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:30<00:09,  2.22it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:30<00:08,  2.40it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:31<00:08,  2.33it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:31<00:07,  2.37it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:31<00:07,  2.39it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:32<00:06,  2.52it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:32<00:05,  2.57it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:33<00:06,  2.19it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:33<00:06,  2.01it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:34<00:05,  2.05it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:34<00:04,  2.23it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:35<00:04,  2.33it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:35<00:03,  2.25it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:35<00:03,  2.27it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:36<00:02,  2.36it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:36<00:02,  2.32it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:37<00:02,  2.29it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:37<00:01,  2.33it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:38<00:01,  2.40it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:38<00:00,  2.26it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:38<00:00,  2.32it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:39<00:00,  2.48it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:39<00:00,  2.35it/s]
***** predict_test_tr_TR metrics *****
  predict_ex_match_acc         =     0.6856
  predict_ex_match_acc_stderr  =     0.0085
  predict_intent_acc           =     0.8675
  predict_intent_acc_stderr    =     0.0062
  predict_loss                 =     0.1582
  predict_runtime              = 0:00:39.89
  predict_samples              =       2974
  predict_samples_per_second   =      74.54
  predict_slot_micro_f1        =     0.7798
  predict_slot_micro_f1_stderr =     0.0033
  predict_steps_per_second     =      2.331
06/10/2024 22:44:31 - INFO - __main__ - *** test_vi_VN ***
[INFO|trainer.py:718] 2024-06-10 22:44:31,087 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:44:31,090 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:44:31,091 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:44:31,091 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:31,  2.86it/s]
  3%|β–Ž         | 3/93 [00:01<00:36,  2.44it/s]
  4%|▍         | 4/93 [00:01<00:38,  2.33it/s]
  5%|β–Œ         | 5/93 [00:02<00:42,  2.05it/s]
  6%|β–‹         | 6/93 [00:02<00:42,  2.06it/s]
  8%|β–Š         | 7/93 [00:03<00:43,  1.97it/s]
  9%|β–Š         | 8/93 [00:03<00:41,  2.03it/s]
 10%|β–‰         | 9/93 [00:04<00:40,  2.07it/s]
 11%|β–ˆ         | 10/93 [00:04<00:41,  2.00it/s]
 12%|β–ˆβ–        | 11/93 [00:05<00:43,  1.89it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:05<00:43,  1.85it/s]
 14%|β–ˆβ–        | 13/93 [00:06<00:41,  1.94it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:07<00:45,  1.72it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:07<00:44,  1.74it/s]
 17%|β–ˆβ–‹        | 16/93 [00:08<00:44,  1.73it/s]
 18%|β–ˆβ–Š        | 17/93 [00:08<00:45,  1.69it/s]
 19%|β–ˆβ–‰        | 18/93 [00:09<00:42,  1.78it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:09<00:42,  1.75it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:10<00:40,  1.80it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:11<00:39,  1.82it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:11<00:38,  1.84it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:12<00:37,  1.87it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:12<00:38,  1.82it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:14<00:54,  1.25it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:14<00:48,  1.38it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:15<00:42,  1.55it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:15<00:37,  1.73it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:15<00:34,  1.84it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:16<00:33,  1.86it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:17<00:33,  1.83it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:17<00:33,  1.82it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:18<00:33,  1.78it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:18<00:36,  1.62it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:19<00:33,  1.75it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:19<00:33,  1.72it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:20<00:31,  1.80it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:21<00:35,  1.55it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:21<00:32,  1.64it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:22<00:32,  1.64it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:23<00:33,  1.55it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:23<00:33,  1.54it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:24<00:33,  1.49it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:25<00:32,  1.52it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:25<00:30,  1.59it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:26<00:30,  1.55it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:27<00:28,  1.61it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:27<00:27,  1.65it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:28<00:25,  1.72it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:28<00:25,  1.71it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:29<00:24,  1.75it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:29<00:23,  1.75it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:30<00:23,  1.69it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:31<00:24,  1.57it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:31<00:23,  1.65it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:32<00:20,  1.81it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:32<00:18,  1.90it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:33<00:18,  1.90it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:33<00:17,  1.92it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:34<00:16,  1.95it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:34<00:15,  2.06it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:35<00:18,  1.72it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:36<00:17,  1.67it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:38<00:30,  1.05s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:38<00:25,  1.10it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:39<00:21,  1.25it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:39<00:19,  1.35it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:40<00:18,  1.32it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:41<00:16,  1.42it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:41<00:15,  1.51it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:42<00:14,  1.51it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:43<00:14,  1.50it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:43<00:12,  1.63it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:44<00:11,  1.70it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:44<00:10,  1.74it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:46<00:16,  1.02it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:47<00:13,  1.16it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:47<00:11,  1.31it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:48<00:10,  1.38it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:50<00:14,  1.10s/it]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:51<00:11,  1.01it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:51<00:09,  1.20it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:52<00:07,  1.31it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:52<00:06,  1.41it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:53<00:05,  1.47it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:53<00:04,  1.61it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:54<00:03,  1.53it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:55<00:03,  1.61it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:55<00:02,  1.71it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:56<00:01,  1.73it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:56<00:01,  1.67it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:57<00:00,  1.73it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:57<00:00,  1.82it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:58<00:00,  1.60it/s]
***** predict_test_vi_VN metrics *****
  predict_ex_match_acc         =     0.6557
  predict_ex_match_acc_stderr  =     0.0087
  predict_intent_acc           =     0.8608
  predict_intent_acc_stderr    =     0.0063
  predict_loss                 =       0.13
  predict_runtime              = 0:00:58.58
  predict_samples              =       2974
  predict_samples_per_second   =     50.767
  predict_slot_micro_f1        =     0.7441
  predict_slot_micro_f1_stderr =     0.0027
  predict_steps_per_second     =      1.588
06/10/2024 22:45:29 - INFO - __main__ - *** test_ar_SA ***
[INFO|trainer.py:718] 2024-06-10 22:45:29,940 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:45:29,942 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:45:29,943 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:45:29,943 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:16,  5.41it/s]
  3%|β–Ž         | 3/93 [00:00<00:24,  3.74it/s]
  4%|▍         | 4/93 [00:01<00:25,  3.47it/s]
  5%|β–Œ         | 5/93 [00:01<00:30,  2.85it/s]
  6%|β–‹         | 6/93 [00:01<00:30,  2.87it/s]
  8%|β–Š         | 7/93 [00:02<00:30,  2.81it/s]
  9%|β–Š         | 8/93 [00:02<00:30,  2.79it/s]
 10%|β–‰         | 9/93 [00:03<00:33,  2.49it/s]
 11%|β–ˆ         | 10/93 [00:03<00:33,  2.49it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:33,  2.42it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:32,  2.51it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:32,  2.45it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:36,  2.18it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:36,  2.16it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:34,  2.22it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:33,  2.25it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:33,  2.22it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:33,  2.21it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:30,  2.37it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:29,  2.45it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:29,  2.41it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:29,  2.41it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:29,  2.34it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:09<00:26,  2.54it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:26,  2.57it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:24,  2.65it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:10<00:23,  2.74it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:11<00:24,  2.63it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:11<00:24,  2.61it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:12<00:24,  2.54it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:12<00:24,  2.52it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:13<00:26,  2.31it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:13<00:24,  2.41it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:13<00:23,  2.43it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:14<00:22,  2.58it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:14<00:20,  2.70it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:14<00:21,  2.60it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:15<00:19,  2.80it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:15<00:20,  2.62it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:16<00:20,  2.54it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:16<00:20,  2.44it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:17<00:22,  2.20it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:17<00:20,  2.38it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:17<00:18,  2.55it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:18<00:18,  2.53it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:18<00:18,  2.43it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:18<00:17,  2.59it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:19<00:16,  2.74it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:19<00:17,  2.50it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:20<00:17,  2.38it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:20<00:18,  2.23it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:21<00:20,  1.98it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:21<00:19,  2.03it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:22<00:17,  2.17it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:22<00:16,  2.26it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:23<00:16,  2.12it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:23<00:15,  2.28it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:23<00:14,  2.33it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:24<00:14,  2.32it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:24<00:12,  2.48it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:25<00:13,  2.37it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:25<00:12,  2.40it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:27<00:25,  1.13it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:21,  1.31it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:28<00:18,  1.48it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:28<00:14,  1.75it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:29<00:13,  1.82it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:29<00:12,  2.00it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:30<00:10,  2.19it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:30<00:09,  2.30it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:31<00:09,  2.16it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:31<00:08,  2.35it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:31<00:08,  2.28it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:32<00:07,  2.39it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:32<00:07,  2.33it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:33<00:06,  2.32it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:33<00:06,  2.30it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:34<00:06,  2.03it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:34<00:06,  2.01it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:35<00:05,  2.04it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:35<00:04,  2.23it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:35<00:04,  2.22it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:36<00:04,  2.16it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:36<00:03,  2.29it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:37<00:02,  2.35it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:37<00:02,  2.41it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:38<00:02,  2.42it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:38<00:01,  2.36it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:38<00:01,  2.39it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:39<00:00,  2.25it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:39<00:00,  2.28it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.31it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.30it/s]
***** predict_test_ar_SA metrics *****
  predict_ex_match_acc         =     0.6422
  predict_ex_match_acc_stderr  =     0.0088
  predict_intent_acc           =     0.8255
  predict_intent_acc_stderr    =      0.007
  predict_loss                 =     0.1855
  predict_runtime              = 0:00:40.74
  predict_samples              =       2974
  predict_samples_per_second   =     72.983
  predict_slot_micro_f1        =     0.7601
  predict_slot_micro_f1_stderr =     0.0034
  predict_steps_per_second     =      2.282
06/10/2024 22:46:10 - INFO - __main__ - *** test_ko_KR ***
[INFO|trainer.py:718] 2024-06-10 22:46:10,882 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:46:10,885 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:46:10,886 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:46:10,886 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:14,  6.13it/s]
  3%|β–Ž         | 3/93 [00:00<00:21,  4.23it/s]
  4%|▍         | 4/93 [00:01<00:24,  3.56it/s]
  5%|β–Œ         | 5/93 [00:01<00:30,  2.87it/s]
  6%|β–‹         | 6/93 [00:01<00:29,  2.96it/s]
  8%|β–Š         | 7/93 [00:02<00:29,  2.87it/s]
  9%|β–Š         | 8/93 [00:02<00:29,  2.89it/s]
 10%|β–‰         | 9/93 [00:02<00:29,  2.87it/s]
 11%|β–ˆ         | 10/93 [00:03<00:29,  2.80it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:29,  2.75it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:03<00:28,  2.80it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:29,  2.74it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:04<00:30,  2.58it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:30,  2.60it/s]
 17%|β–ˆβ–‹        | 16/93 [00:05<00:28,  2.66it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:31,  2.45it/s]
 19%|β–ˆβ–‰        | 18/93 [00:06<00:29,  2.56it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:06<00:29,  2.53it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:28,  2.59it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:07<00:26,  2.71it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:07<00:28,  2.45it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:08<00:28,  2.43it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:08<00:27,  2.52it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:09<00:27,  2.50it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:09<00:27,  2.46it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:09<00:25,  2.60it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:10<00:23,  2.73it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:10<00:23,  2.76it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:11<00:23,  2.64it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:11<00:28,  2.21it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:11<00:25,  2.42it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:12<00:24,  2.48it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:12<00:22,  2.63it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:13<00:21,  2.68it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:13<00:19,  2.87it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:13<00:18,  2.95it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:13<00:19,  2.87it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:14<00:17,  3.02it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:14<00:17,  2.96it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:14<00:17,  2.99it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:15<00:18,  2.69it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:15<00:19,  2.58it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:16<00:19,  2.55it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:16<00:17,  2.71it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:16<00:16,  2.80it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:17<00:17,  2.63it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:17<00:16,  2.75it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:17<00:15,  2.91it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:18<00:15,  2.85it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:18<00:15,  2.79it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:19<00:15,  2.65it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:19<00:15,  2.60it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:19<00:14,  2.62it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:20<00:13,  2.73it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:20<00:13,  2.83it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:20<00:12,  2.92it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:21<00:11,  2.94it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:21<00:11,  3.00it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:21<00:10,  3.05it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:22<00:10,  3.09it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:22<00:10,  2.82it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:22<00:10,  2.87it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:23<00:12,  2.36it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:23<00:11,  2.51it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:24<00:11,  2.42it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:24<00:10,  2.47it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:25<00:10,  2.48it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:25<00:09,  2.47it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:25<00:09,  2.49it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:26<00:08,  2.67it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:26<00:08,  2.55it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:26<00:07,  2.74it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:27<00:07,  2.57it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:27<00:06,  2.79it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:28<00:06,  2.55it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:28<00:06,  2.66it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:28<00:05,  2.70it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:29<00:06,  2.27it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:29<00:05,  2.20it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:30<00:05,  2.32it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:30<00:04,  2.46it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:31<00:03,  2.52it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:31<00:03,  2.34it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:31<00:03,  2.46it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:32<00:02,  2.60it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:32<00:02,  2.67it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:32<00:01,  2.74it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:33<00:01,  2.65it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:33<00:01,  2.62it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:34<00:00,  2.39it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:34<00:00,  2.37it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:34<00:00,  2.50it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:35<00:00,  2.64it/s]
***** predict_test_ko_KR metrics *****
  predict_ex_match_acc         =     0.6967
  predict_ex_match_acc_stderr  =     0.0084
  predict_intent_acc           =     0.8642
  predict_intent_acc_stderr    =     0.0063
  predict_loss                 =     0.1606
  predict_runtime              = 0:00:35.57
  predict_samples              =       2974
  predict_samples_per_second   =     83.608
  predict_slot_micro_f1        =     0.8051
  predict_slot_micro_f1_stderr =     0.0033
  predict_steps_per_second     =      2.614