File size: 107,064 Bytes
8048f3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the --report_to flag to control the integrations used for logging result (for instance --report_to none).
06/10/2024 22:36:58 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: False, 16-bits training: False
06/10/2024 22:36:58 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=2,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=input_length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/NLU/runs/Jun10_22-36-57_tholus-7.int.europe.naverlabs.com,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=3.0,
optim=adamw_torch,
optim_args=None,
output_dir=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/NLU,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=32,
per_device_train_batch_size=8,
predict_with_generate=True,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
resume_from_checkpoint=None,
run_name=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/NLU,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=steps,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
Loading Dataset Infos from /beegfs/scratch/user/blee/hugging-face/models/modules/datasets_modules/datasets/massive_slu/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
06/10/2024 22:36:58 - INFO - datasets.info - Loading Dataset Infos from /beegfs/scratch/user/blee/hugging-face/models/modules/datasets_modules/datasets/massive_slu/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
Overwrite dataset info from restored data version if exists.
06/10/2024 22:36:58 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
06/10/2024 22:36:58 - INFO - datasets.info - Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
Found cached dataset massive_slu (/beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617)
06/10/2024 22:36:58 - INFO - datasets.builder - Found cached dataset massive_slu (/beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617)
Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
06/10/2024 22:36:58 - INFO - datasets.info - Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617
[INFO|configuration_utils.py:737] 2024-06-10 22:36:58,618 >> loading configuration file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/config.json
[INFO|configuration_utils.py:802] 2024-06-10 22:36:58,633 >> Model config MT5Config {
"_name_or_path": "/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407",
"architectures": [
"MT5ForConditionalGeneration"
],
"classifier_dropout": 0.0,
"d_ff": 2048,
"d_kv": 64,
"d_model": 768,
"decoder_start_token_id": 0,
"dense_act_fn": "gelu_new",
"dropout": 0.2,
"dropout_rate": 0.1,
"eos_token_id": 1,
"feed_forward_proj": "gated-gelu",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "mt5",
"num_decoder_layers": 12,
"num_heads": 12,
"num_layers": 12,
"output_past": true,
"pad_token_id": 0,
"relative_attention_max_distance": 128,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"tokenizer_class": "T5Tokenizer",
"torch_dtype": "float32",
"transformers_version": "4.37.0.dev0",
"use_cache": true,
"vocab_size": 250112
}
[INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,656 >> loading file spiece.model
[INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,658 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,660 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,662 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,665 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:3373] 2024-06-10 22:36:59,181 >> loading weights file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/model.safetensors
[INFO|configuration_utils.py:826] 2024-06-10 22:36:59,353 >> Generate config GenerationConfig {
"decoder_start_token_id": 0,
"eos_token_id": 1,
"pad_token_id": 0
}
[INFO|modeling_utils.py:4224] 2024-06-10 22:37:04,608 >> All model checkpoint weights were used when initializing MT5ForConditionalGeneration.
[INFO|modeling_utils.py:4232] 2024-06-10 22:37:04,610 >> All the weights of MT5ForConditionalGeneration were initialized from the model checkpoint at /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407.
If your task is similar to the task the model of the checkpoint was trained on, you can already use MT5ForConditionalGeneration for predictions without further training.
[INFO|configuration_utils.py:779] 2024-06-10 22:37:04,625 >> loading configuration file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/generation_config.json
[INFO|configuration_utils.py:826] 2024-06-10 22:37:04,627 >> Generate config GenerationConfig {
"decoder_start_token_id": 0,
"eos_token_id": 1,
"pad_token_id": 0
}
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-525dddbb93e613dc.arrow
06/10/2024 22:37:04 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-525dddbb93e613dc.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 10152.18 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 9881.17 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-0ff2f782f6ce550d.arrow
06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-0ff2f782f6ce550d.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 23379.87 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 22426.85 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-db517c5fbde3f93f.arrow
06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-db517c5fbde3f93f.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 24733.67 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 23464.22 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b1a23ce3c266ed7e.arrow
06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b1a23ce3c266ed7e.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 11672.89 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 11022.17 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-d14f4edcd32d40f9.arrow
06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-d14f4edcd32d40f9.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 12128.52 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 11483.51 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c32b0d4edcd745d1.arrow
06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c32b0d4edcd745d1.arrow
Running tokenizer on prediction dataset: 34%|ββββ | 1000/2974 [00:00<00:00, 7372.97 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 13353.47 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-65b7a58a8f4b62ba.arrow
06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-65b7a58a8f4b62ba.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 23271.39 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 21331.30 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-8571e8bc453b7162.arrow
06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-8571e8bc453b7162.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 23459.63 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 18122.89 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c74febb30a64318a.arrow
06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c74febb30a64318a.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 11319.17 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 10715.31 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-4c2b08ae5bc14226.arrow
06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-4c2b08ae5bc14226.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 24163.00 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 20604.87 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-5a36e19b80c96113.arrow
06/10/2024 22:37:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-5a36e19b80c96113.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 20147.34 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 12138.36 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b7c60de80d7c7840.arrow
06/10/2024 22:37:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b7c60de80d7c7840.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 25152.92 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 22962.73 examples/s]
Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-ae561d58d8bc6128.arrow
06/10/2024 22:37:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-ae561d58d8bc6128.arrow
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 26368.84 examples/s]
Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 23629.43 examples/s]
06/10/2024 22:37:09 - WARNING - accelerate.utils.other - Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
06/10/2024 22:37:10 - INFO - __main__ - *** Predict ***
06/10/2024 22:37:10 - INFO - __main__ - *** test_en_US ***
[INFO|trainer.py:718] 2024-06-10 22:37:10,687 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:37:10,695 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:37:10,696 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:37:10,697 >> Batch size = 32
[WARNING|logging.py:314] 2024-06-10 22:37:10,704 >> You're using a T5TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:20, 4.34it/s]
3%|β | 3/93 [00:00<00:25, 3.51it/s]
4%|β | 4/93 [00:01<00:27, 3.20it/s]
5%|β | 5/93 [00:01<00:32, 2.72it/s]
6%|β | 6/93 [00:02<00:32, 2.71it/s]
8%|β | 7/93 [00:02<00:31, 2.69it/s]
9%|β | 8/93 [00:02<00:32, 2.61it/s]
10%|β | 9/93 [00:03<00:33, 2.52it/s]
11%|β | 10/93 [00:03<00:33, 2.51it/s]
12%|ββ | 11/93 [00:04<00:33, 2.44it/s]
13%|ββ | 12/93 [00:04<00:32, 2.46it/s]
14%|ββ | 13/93 [00:04<00:33, 2.41it/s]
15%|ββ | 14/93 [00:05<00:37, 2.12it/s]
16%|ββ | 15/93 [00:05<00:36, 2.11it/s]
17%|ββ | 16/93 [00:06<00:34, 2.25it/s]
18%|ββ | 17/93 [00:06<00:34, 2.18it/s]
19%|ββ | 18/93 [00:07<00:33, 2.26it/s]
20%|ββ | 19/93 [00:07<00:33, 2.19it/s]
22%|βββ | 20/93 [00:08<00:32, 2.23it/s]
23%|βββ | 21/93 [00:08<00:32, 2.21it/s]
24%|βββ | 22/93 [00:09<00:33, 2.14it/s]
25%|βββ | 23/93 [00:09<00:33, 2.10it/s]
26%|βββ | 24/93 [00:10<00:31, 2.17it/s]
27%|βββ | 25/93 [00:10<00:30, 2.19it/s]
28%|βββ | 26/93 [00:10<00:30, 2.19it/s]
29%|βββ | 27/93 [00:11<00:28, 2.30it/s]
30%|βββ | 28/93 [00:11<00:26, 2.41it/s]
31%|βββ | 29/93 [00:12<00:26, 2.44it/s]
32%|ββββ | 30/93 [00:12<00:25, 2.43it/s]
33%|ββββ | 31/93 [00:13<00:27, 2.25it/s]
34%|ββββ | 32/93 [00:13<00:26, 2.33it/s]
35%|ββββ | 33/93 [00:13<00:26, 2.26it/s]
37%|ββββ | 34/93 [00:14<00:27, 2.15it/s]
38%|ββββ | 35/93 [00:14<00:25, 2.26it/s]
39%|ββββ | 36/93 [00:15<00:23, 2.45it/s]
40%|ββββ | 37/93 [00:15<00:22, 2.52it/s]
41%|ββββ | 38/93 [00:16<00:23, 2.32it/s]
42%|βββββ | 39/93 [00:16<00:22, 2.37it/s]
43%|βββββ | 40/93 [00:16<00:22, 2.39it/s]
44%|βββββ | 41/93 [00:17<00:22, 2.32it/s]
45%|βββββ | 42/93 [00:17<00:22, 2.25it/s]
46%|βββββ | 43/93 [00:18<00:23, 2.10it/s]
47%|βββββ | 44/93 [00:18<00:23, 2.10it/s]
48%|βββββ | 45/93 [00:19<00:21, 2.22it/s]
49%|βββββ | 46/93 [00:19<00:20, 2.27it/s]
51%|βββββ | 47/93 [00:20<00:20, 2.20it/s]
52%|ββββββ | 48/93 [00:20<00:19, 2.28it/s]
53%|ββββββ | 49/93 [00:20<00:18, 2.41it/s]
54%|ββββββ | 50/93 [00:21<00:20, 2.13it/s]
55%|ββββββ | 51/93 [00:22<00:20, 2.02it/s]
56%|ββββββ | 52/93 [00:22<00:21, 1.95it/s]
57%|ββββββ | 53/93 [00:23<00:19, 2.00it/s]
58%|ββββββ | 54/93 [00:23<00:20, 1.95it/s]
59%|ββββββ | 55/93 [00:23<00:18, 2.10it/s]
60%|ββββββ | 56/93 [00:24<00:15, 2.33it/s]
61%|βββββββ | 57/93 [00:24<00:16, 2.22it/s]
62%|βββββββ | 58/93 [00:25<00:14, 2.35it/s]
63%|βββββββ | 59/93 [00:25<00:14, 2.28it/s]
65%|βββββββ | 60/93 [00:26<00:15, 2.17it/s]
66%|βββββββ | 61/93 [00:26<00:13, 2.34it/s]
67%|βββββββ | 62/93 [00:27<00:14, 2.19it/s]
68%|βββββββ | 63/93 [00:27<00:13, 2.27it/s]
69%|βββββββ | 64/93 [00:29<00:26, 1.10it/s]
70%|βββββββ | 65/93 [00:29<00:21, 1.33it/s]
71%|βββββββ | 66/93 [00:30<00:17, 1.55it/s]
72%|ββββββββ | 67/93 [00:30<00:15, 1.73it/s]
73%|ββββββββ | 68/93 [00:31<00:15, 1.66it/s]
74%|ββββββββ | 69/93 [00:31<00:13, 1.80it/s]
75%|ββββββββ | 70/93 [00:32<00:11, 1.93it/s]
76%|ββββββββ | 71/93 [00:32<00:10, 2.04it/s]
77%|ββββββββ | 72/93 [00:33<00:10, 2.03it/s]
78%|ββββββββ | 73/93 [00:33<00:09, 2.15it/s]
80%|ββββββββ | 74/93 [00:33<00:08, 2.11it/s]
81%|ββββββββ | 75/93 [00:34<00:07, 2.31it/s]
82%|βββββββββ | 76/93 [00:34<00:07, 2.16it/s]
83%|βββββββββ | 77/93 [00:35<00:07, 2.19it/s]
84%|βββββββββ | 78/93 [00:35<00:07, 2.11it/s]
85%|βββββββββ | 79/93 [00:36<00:07, 1.91it/s]
86%|βββββββββ | 80/93 [00:37<00:07, 1.80it/s]
87%|βββββββββ | 81/93 [00:37<00:06, 1.97it/s]
88%|βββββββββ | 82/93 [00:37<00:05, 2.16it/s]
89%|βββββββββ | 83/93 [00:38<00:04, 2.20it/s]
90%|βββββββββ | 84/93 [00:38<00:04, 2.06it/s]
91%|ββββββββββ| 85/93 [00:39<00:03, 2.03it/s]
92%|ββββββββββ| 86/93 [00:39<00:03, 2.16it/s]
94%|ββββββββββ| 87/93 [00:40<00:02, 2.17it/s]
95%|ββββββββββ| 88/93 [00:40<00:02, 2.13it/s]
96%|ββββββββββ| 89/93 [00:41<00:01, 2.16it/s]
97%|ββββββββββ| 90/93 [00:41<00:01, 2.20it/s]
98%|ββββββββββ| 91/93 [00:42<00:00, 2.08it/s]
99%|ββββββββββ| 92/93 [00:42<00:00, 2.17it/s]
100%|ββββββββββ| 93/93 [00:42<00:00, 2.18it/s]
100%|ββββββββββ| 93/93 [00:43<00:00, 2.14it/s]
***** predict_test_en_US metrics *****
predict_ex_match_acc = 0.7317
predict_ex_match_acc_stderr = 0.0081
predict_intent_acc = 0.8894
predict_intent_acc_stderr = 0.0058
predict_loss = 0.1316
predict_runtime = 0:00:44.50
predict_samples = 2974
predict_samples_per_second = 66.819
predict_slot_micro_f1 = 0.8224
predict_slot_micro_f1_stderr = 0.0027
predict_steps_per_second = 2.089
06/10/2024 22:37:55 - INFO - __main__ - *** test_es_ES ***
[INFO|trainer.py:718] 2024-06-10 22:37:55,406 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:37:55,409 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:37:55,409 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:37:55,410 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:22, 3.96it/s]
3%|β | 3/93 [00:00<00:27, 3.25it/s]
4%|β | 4/93 [00:01<00:29, 3.01it/s]
5%|β | 5/93 [00:01<00:35, 2.46it/s]
6%|β | 6/93 [00:02<00:36, 2.41it/s]
8%|β | 7/93 [00:02<00:35, 2.44it/s]
9%|β | 8/93 [00:03<00:35, 2.43it/s]
10%|β | 9/93 [00:03<00:37, 2.24it/s]
11%|β | 10/93 [00:04<00:36, 2.27it/s]
12%|ββ | 11/93 [00:04<00:35, 2.32it/s]
13%|ββ | 12/93 [00:04<00:34, 2.33it/s]
14%|ββ | 13/93 [00:05<00:35, 2.27it/s]
15%|ββ | 14/93 [00:06<00:40, 1.93it/s]
16%|ββ | 15/93 [00:06<00:39, 1.96it/s]
17%|ββ | 16/93 [00:07<00:39, 1.97it/s]
18%|ββ | 17/93 [00:07<00:40, 1.90it/s]
19%|ββ | 18/93 [00:08<00:37, 1.98it/s]
20%|ββ | 19/93 [00:08<00:38, 1.94it/s]
22%|βββ | 20/93 [00:09<00:36, 2.02it/s]
23%|βββ | 21/93 [00:09<00:37, 1.93it/s]
24%|βββ | 22/93 [00:10<00:36, 1.93it/s]
25%|βββ | 23/93 [00:10<00:35, 1.99it/s]
26%|βββ | 24/93 [00:10<00:32, 2.12it/s]
27%|βββ | 25/93 [00:12<01:01, 1.11it/s]
28%|βββ | 26/93 [00:13<00:51, 1.30it/s]
29%|βββ | 27/93 [00:13<00:42, 1.55it/s]
30%|βββ | 28/93 [00:14<00:37, 1.73it/s]
31%|βββ | 29/93 [00:14<00:33, 1.89it/s]
32%|ββββ | 30/93 [00:14<00:31, 1.98it/s]
33%|ββββ | 31/93 [00:15<00:33, 1.86it/s]
34%|ββββ | 32/93 [00:16<00:30, 2.01it/s]
35%|ββββ | 33/93 [00:16<00:30, 1.98it/s]
37%|ββββ | 34/93 [00:17<00:30, 1.93it/s]
38%|ββββ | 35/93 [00:17<00:28, 2.04it/s]
39%|ββββ | 36/93 [00:17<00:25, 2.24it/s]
40%|ββββ | 37/93 [00:18<00:22, 2.47it/s]
41%|ββββ | 38/93 [00:18<00:24, 2.23it/s]
42%|βββββ | 39/93 [00:19<00:23, 2.28it/s]
43%|βββββ | 40/93 [00:19<00:24, 2.14it/s]
44%|βββββ | 41/93 [00:20<00:26, 1.97it/s]
45%|βββββ | 42/93 [00:20<00:27, 1.83it/s]
46%|βββββ | 43/93 [00:21<00:28, 1.78it/s]
47%|βββββ | 44/93 [00:22<00:26, 1.82it/s]
48%|βββββ | 45/93 [00:22<00:24, 1.95it/s]
49%|βββββ | 46/93 [00:22<00:24, 1.94it/s]
51%|βββββ | 47/93 [00:23<00:25, 1.81it/s]
52%|ββββββ | 48/93 [00:24<00:23, 1.92it/s]
53%|ββββββ | 49/93 [00:24<00:21, 2.03it/s]
54%|ββββββ | 50/93 [00:24<00:20, 2.06it/s]
55%|ββββββ | 51/93 [00:25<00:21, 2.00it/s]
56%|ββββββ | 52/93 [00:26<00:22, 1.86it/s]
57%|ββββββ | 53/93 [00:26<00:20, 1.91it/s]
58%|ββββββ | 54/93 [00:27<00:20, 1.92it/s]
59%|ββββββ | 55/93 [00:27<00:19, 1.98it/s]
60%|ββββββ | 56/93 [00:27<00:17, 2.15it/s]
61%|βββββββ | 57/93 [00:28<00:17, 2.03it/s]
62%|βββββββ | 58/93 [00:28<00:16, 2.07it/s]
63%|βββββββ | 59/93 [00:29<00:15, 2.14it/s]
65%|βββββββ | 60/93 [00:29<00:16, 2.01it/s]
66%|βββββββ | 61/93 [00:30<00:15, 2.08it/s]
67%|βββββββ | 62/93 [00:30<00:14, 2.11it/s]
68%|βββββββ | 63/93 [00:31<00:14, 2.10it/s]
69%|βββββββ | 64/93 [00:33<00:27, 1.06it/s]
70%|βββββββ | 65/93 [00:33<00:22, 1.23it/s]
71%|βββββββ | 66/93 [00:34<00:20, 1.34it/s]
72%|ββββββββ | 67/93 [00:34<00:17, 1.52it/s]
73%|ββββββββ | 68/93 [00:35<00:16, 1.49it/s]
74%|ββββββββ | 69/93 [00:36<00:14, 1.62it/s]
75%|ββββββββ | 70/93 [00:36<00:13, 1.72it/s]
76%|ββββββββ | 71/93 [00:37<00:12, 1.80it/s]
77%|ββββββββ | 72/93 [00:37<00:11, 1.86it/s]
78%|ββββββββ | 73/93 [00:38<00:10, 1.91it/s]
80%|ββββββββ | 74/93 [00:38<00:09, 1.91it/s]
81%|ββββββββ | 75/93 [00:39<00:08, 2.03it/s]
82%|βββββββββ | 76/93 [00:39<00:08, 2.07it/s]
83%|βββββββββ | 77/93 [00:39<00:07, 2.20it/s]
84%|βββββββββ | 78/93 [00:40<00:06, 2.29it/s]
85%|βββββββββ | 79/93 [00:40<00:07, 1.95it/s]
86%|βββββββββ | 80/93 [00:41<00:07, 1.86it/s]
87%|βββββββββ | 81/93 [00:42<00:06, 1.93it/s]
88%|βββββββββ | 82/93 [00:42<00:05, 2.11it/s]
89%|βββββββββ | 83/93 [00:42<00:04, 2.06it/s]
90%|βββββββββ | 84/93 [00:43<00:04, 1.88it/s]
91%|ββββββββββ| 85/93 [00:44<00:04, 1.99it/s]
92%|ββββββββββ| 86/93 [00:44<00:03, 2.09it/s]
94%|ββββββββββ| 87/93 [00:44<00:02, 2.01it/s]
95%|ββββββββββ| 88/93 [00:45<00:02, 2.00it/s]
96%|ββββββββββ| 89/93 [00:45<00:01, 2.04it/s]
97%|ββββββββββ| 90/93 [00:46<00:01, 2.09it/s]
98%|ββββββββββ| 91/93 [00:46<00:01, 2.00it/s]
99%|ββββββββββ| 92/93 [00:47<00:00, 2.03it/s]
100%|ββββββββββ| 93/93 [00:47<00:00, 2.13it/s]
100%|ββββββββββ| 93/93 [00:48<00:00, 1.94it/s]
***** predict_test_es_ES metrics *****
predict_ex_match_acc = 0.6722
predict_ex_match_acc_stderr = 0.0086
predict_intent_acc = 0.8692
predict_intent_acc_stderr = 0.0062
predict_loss = 0.159
predict_runtime = 0:00:48.47
predict_samples = 2974
predict_samples_per_second = 61.347
predict_slot_micro_f1 = 0.76
predict_slot_micro_f1_stderr = 0.0029
predict_steps_per_second = 1.918
06/10/2024 22:38:44 - INFO - __main__ - *** test_de_DE ***
[INFO|trainer.py:718] 2024-06-10 22:38:44,125 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:38:44,127 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:38:44,128 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:38:44,128 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:20, 4.47it/s]
3%|β | 3/93 [00:00<00:24, 3.64it/s]
4%|β | 4/93 [00:01<00:26, 3.31it/s]
5%|β | 5/93 [00:01<00:30, 2.91it/s]
6%|β | 6/93 [00:01<00:31, 2.74it/s]
8%|β | 7/93 [00:02<00:31, 2.69it/s]
9%|β | 8/93 [00:02<00:31, 2.66it/s]
10%|β | 9/93 [00:03<00:33, 2.54it/s]
11%|β | 10/93 [00:03<00:32, 2.53it/s]
12%|ββ | 11/93 [00:03<00:32, 2.55it/s]
13%|ββ | 12/93 [00:04<00:31, 2.56it/s]
14%|ββ | 13/93 [00:04<00:32, 2.49it/s]
15%|ββ | 14/93 [00:05<00:36, 2.14it/s]
16%|ββ | 15/93 [00:05<00:36, 2.16it/s]
17%|ββ | 16/93 [00:06<00:32, 2.34it/s]
18%|ββ | 17/93 [00:06<00:34, 2.22it/s]
19%|ββ | 18/93 [00:07<00:32, 2.29it/s]
20%|ββ | 19/93 [00:07<00:32, 2.29it/s]
22%|βββ | 20/93 [00:07<00:30, 2.38it/s]
23%|βββ | 21/93 [00:08<00:29, 2.46it/s]
24%|βββ | 22/93 [00:08<00:30, 2.29it/s]
25%|βββ | 23/93 [00:09<00:31, 2.26it/s]
26%|βββ | 24/93 [00:09<00:29, 2.35it/s]
27%|βββ | 25/93 [00:10<00:30, 2.25it/s]
28%|βββ | 26/93 [00:10<00:30, 2.22it/s]
29%|βββ | 27/93 [00:10<00:28, 2.33it/s]
30%|βββ | 28/93 [00:11<00:26, 2.47it/s]
31%|βββ | 29/93 [00:11<00:25, 2.51it/s]
32%|ββββ | 30/93 [00:12<00:25, 2.49it/s]
33%|ββββ | 31/93 [00:12<00:25, 2.40it/s]
34%|ββββ | 32/93 [00:12<00:25, 2.39it/s]
35%|ββββ | 33/93 [00:13<00:27, 2.22it/s]
37%|ββββ | 34/93 [00:13<00:25, 2.27it/s]
38%|ββββ | 35/93 [00:14<00:24, 2.32it/s]
39%|ββββ | 36/93 [00:14<00:22, 2.48it/s]
40%|ββββ | 37/93 [00:14<00:21, 2.64it/s]
41%|ββββ | 38/93 [00:15<00:22, 2.49it/s]
42%|βββββ | 39/93 [00:15<00:21, 2.49it/s]
43%|βββββ | 40/93 [00:16<00:21, 2.45it/s]
44%|βββββ | 41/93 [00:16<00:22, 2.33it/s]
45%|βββββ | 42/93 [00:17<00:24, 2.11it/s]
46%|βββββ | 43/93 [00:17<00:24, 2.03it/s]
47%|βββββ | 44/93 [00:18<00:23, 2.13it/s]
48%|βββββ | 45/93 [00:18<00:21, 2.25it/s]
49%|βββββ | 46/93 [00:19<00:20, 2.31it/s]
51%|βββββ | 47/93 [00:19<00:21, 2.19it/s]
52%|ββββββ | 48/93 [00:20<00:19, 2.26it/s]
53%|ββββββ | 49/93 [00:20<00:19, 2.30it/s]
54%|ββββββ | 50/93 [00:20<00:18, 2.31it/s]
55%|ββββββ | 51/93 [00:21<00:17, 2.42it/s]
56%|ββββββ | 52/93 [00:21<00:19, 2.15it/s]
57%|ββββββ | 53/93 [00:22<00:18, 2.14it/s]
58%|ββββββ | 54/93 [00:22<00:18, 2.06it/s]
59%|ββββββ | 55/93 [00:23<00:17, 2.18it/s]
60%|ββββββ | 56/93 [00:23<00:16, 2.30it/s]
61%|βββββββ | 57/93 [00:24<00:16, 2.20it/s]
62%|βββββββ | 58/93 [00:24<00:15, 2.28it/s]
63%|βββββββ | 59/93 [00:24<00:15, 2.22it/s]
65%|βββββββ | 60/93 [00:25<00:15, 2.13it/s]
66%|βββββββ | 61/93 [00:25<00:14, 2.27it/s]
67%|βββββββ | 62/93 [00:26<00:14, 2.14it/s]
68%|βββββββ | 63/93 [00:26<00:13, 2.29it/s]
69%|βββββββ | 64/93 [00:28<00:26, 1.10it/s]
70%|βββββββ | 65/93 [00:29<00:20, 1.35it/s]
71%|βββββββ | 66/93 [00:29<00:17, 1.57it/s]
72%|ββββββββ | 67/93 [00:29<00:14, 1.77it/s]
73%|ββββββββ | 68/93 [00:30<00:13, 1.92it/s]
74%|ββββββββ | 69/93 [00:30<00:12, 1.91it/s]
75%|ββββββββ | 70/93 [00:31<00:11, 2.05it/s]
76%|ββββββββ | 71/93 [00:31<00:10, 2.15it/s]
77%|ββββββββ | 72/93 [00:32<00:10, 2.08it/s]
78%|ββββββββ | 73/93 [00:32<00:08, 2.27it/s]
80%|ββββββββ | 74/93 [00:32<00:08, 2.22it/s]
81%|ββββββββ | 75/93 [00:33<00:08, 2.21it/s]
82%|βββββββββ | 76/93 [00:33<00:07, 2.17it/s]
83%|βββββββββ | 77/93 [00:34<00:07, 2.20it/s]
84%|βββββββββ | 78/93 [00:34<00:06, 2.23it/s]
85%|βββββββββ | 79/93 [00:35<00:07, 1.95it/s]
86%|βββββββββ | 80/93 [00:35<00:06, 1.95it/s]
87%|βββββββββ | 81/93 [00:36<00:05, 2.04it/s]
88%|βββββββββ | 82/93 [00:36<00:04, 2.22it/s]
89%|βββββββββ | 83/93 [00:37<00:04, 2.22it/s]
90%|βββββββββ | 84/93 [00:37<00:04, 2.20it/s]
91%|ββββββββββ| 85/93 [00:38<00:03, 2.24it/s]
92%|ββββββββββ| 86/93 [00:38<00:03, 2.31it/s]
94%|ββββββββββ| 87/93 [00:38<00:02, 2.23it/s]
95%|ββββββββββ| 88/93 [00:39<00:02, 2.24it/s]
96%|ββββββββββ| 89/93 [00:39<00:01, 2.19it/s]
97%|ββββββββββ| 90/93 [00:40<00:01, 2.33it/s]
98%|ββββββββββ| 91/93 [00:40<00:00, 2.16it/s]
99%|ββββββββββ| 92/93 [00:41<00:00, 2.23it/s]
100%|ββββββββββ| 93/93 [00:41<00:00, 2.23it/s]
100%|ββββββββββ| 93/93 [00:41<00:00, 2.22it/s]
***** predict_test_de_DE metrics *****
predict_ex_match_acc = 0.696
predict_ex_match_acc_stderr = 0.0084
predict_intent_acc = 0.8665
predict_intent_acc_stderr = 0.0062
predict_loss = 0.1518
predict_runtime = 0:00:42.34
predict_samples = 2974
predict_samples_per_second = 70.231
predict_slot_micro_f1 = 0.7999
predict_slot_micro_f1_stderr = 0.0029
predict_steps_per_second = 2.196
06/10/2024 22:39:26 - INFO - __main__ - *** test_fr_FR ***
[INFO|trainer.py:718] 2024-06-10 22:39:26,669 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:39:26,671 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:39:26,672 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:39:26,672 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:22, 4.11it/s]
3%|β | 3/93 [00:00<00:30, 2.95it/s]
4%|β | 4/93 [00:01<00:33, 2.65it/s]
5%|β | 5/93 [00:01<00:38, 2.30it/s]
6%|β | 6/93 [00:02<00:36, 2.37it/s]
8%|β | 7/93 [00:02<00:38, 2.23it/s]
9%|β | 8/93 [00:03<00:37, 2.27it/s]
10%|β | 9/93 [00:03<00:37, 2.26it/s]
11%|β | 10/93 [00:04<00:38, 2.17it/s]
12%|ββ | 11/93 [00:04<00:37, 2.20it/s]
13%|ββ | 12/93 [00:05<00:36, 2.22it/s]
14%|ββ | 13/93 [00:05<00:36, 2.19it/s]
15%|ββ | 14/93 [00:06<00:41, 1.89it/s]
16%|ββ | 15/93 [00:06<00:40, 1.91it/s]
17%|ββ | 16/93 [00:07<00:37, 2.03it/s]
18%|ββ | 17/93 [00:07<00:39, 1.91it/s]
19%|ββ | 18/93 [00:08<00:37, 1.98it/s]
20%|ββ | 19/93 [00:08<00:37, 1.98it/s]
22%|βββ | 20/93 [00:09<00:36, 2.03it/s]
23%|βββ | 21/93 [00:09<00:35, 2.04it/s]
24%|βββ | 22/93 [00:10<00:35, 1.99it/s]
25%|βββ | 23/93 [00:10<00:33, 2.06it/s]
26%|βββ | 24/93 [00:11<00:33, 2.09it/s]
27%|βββ | 25/93 [00:11<00:35, 1.92it/s]
28%|βββ | 26/93 [00:12<00:36, 1.85it/s]
29%|βββ | 27/93 [00:12<00:32, 2.05it/s]
30%|βββ | 28/93 [00:13<00:30, 2.13it/s]
31%|βββ | 29/93 [00:13<00:30, 2.11it/s]
32%|ββββ | 30/93 [00:14<00:28, 2.21it/s]
33%|ββββ | 31/93 [00:14<00:28, 2.19it/s]
34%|ββββ | 32/93 [00:14<00:28, 2.13it/s]
35%|ββββ | 33/93 [00:15<00:28, 2.08it/s]
37%|ββββ | 34/93 [00:15<00:28, 2.09it/s]
38%|ββββ | 35/93 [00:16<00:26, 2.20it/s]
39%|ββββ | 36/93 [00:16<00:25, 2.25it/s]
40%|ββββ | 37/93 [00:17<00:23, 2.39it/s]
41%|ββββ | 38/93 [00:17<00:26, 2.06it/s]
42%|βββββ | 39/93 [00:18<00:24, 2.17it/s]
43%|βββββ | 40/93 [00:18<00:24, 2.18it/s]
44%|βββββ | 41/93 [00:19<00:24, 2.10it/s]
45%|βββββ | 42/93 [00:19<00:26, 1.89it/s]
46%|βββββ | 43/93 [00:20<00:27, 1.82it/s]
47%|βββββ | 44/93 [00:20<00:26, 1.86it/s]
48%|βββββ | 45/93 [00:21<00:23, 2.00it/s]
49%|βββββ | 46/93 [00:21<00:23, 1.98it/s]
51%|βββββ | 47/93 [00:22<00:23, 1.99it/s]
52%|ββββββ | 48/93 [00:22<00:21, 2.10it/s]
53%|ββββββ | 49/93 [00:23<00:20, 2.14it/s]
54%|ββββββ | 50/93 [00:23<00:20, 2.12it/s]
55%|ββββββ | 51/93 [00:24<00:20, 2.04it/s]
56%|ββββββ | 52/93 [00:24<00:19, 2.08it/s]
57%|ββββββ | 53/93 [00:25<00:19, 2.07it/s]
58%|ββββββ | 54/93 [00:25<00:19, 2.03it/s]
59%|ββββββ | 55/93 [00:26<00:19, 1.95it/s]
60%|ββββββ | 56/93 [00:26<00:17, 2.15it/s]
61%|βββββββ | 57/93 [00:26<00:15, 2.28it/s]
62%|βββββββ | 58/93 [00:27<00:15, 2.27it/s]
63%|βββββββ | 59/93 [00:27<00:15, 2.18it/s]
65%|βββββββ | 60/93 [00:28<00:15, 2.16it/s]
66%|βββββββ | 61/93 [00:28<00:13, 2.31it/s]
67%|βββββββ | 62/93 [00:29<00:14, 2.14it/s]
68%|βββββββ | 63/93 [00:29<00:14, 2.06it/s]
69%|βββββββ | 64/93 [00:31<00:27, 1.04it/s]
70%|βββββββ | 65/93 [00:32<00:23, 1.21it/s]
71%|βββββββ | 66/93 [00:32<00:19, 1.39it/s]
72%|ββββββββ | 67/93 [00:33<00:16, 1.56it/s]
73%|ββββββββ | 68/93 [00:33<00:16, 1.56it/s]
74%|ββββββββ | 69/93 [00:34<00:13, 1.74it/s]
75%|ββββββββ | 70/93 [00:34<00:12, 1.88it/s]
76%|ββββββββ | 71/93 [00:35<00:11, 1.96it/s]
77%|ββββββββ | 72/93 [00:35<00:11, 1.90it/s]
78%|ββββββββ | 73/93 [00:36<00:10, 1.98it/s]
80%|ββββββββ | 74/93 [00:36<00:09, 2.08it/s]
81%|ββββββββ | 75/93 [00:37<00:07, 2.25it/s]
82%|βββββββββ | 76/93 [00:37<00:07, 2.16it/s]
83%|βββββββββ | 77/93 [00:38<00:07, 2.17it/s]
84%|βββββββββ | 78/93 [00:38<00:07, 2.08it/s]
85%|βββββββββ | 79/93 [00:39<00:06, 2.12it/s]
86%|βββββββββ | 80/93 [00:40<00:11, 1.11it/s]
87%|βββββββββ | 81/93 [00:41<00:09, 1.29it/s]
88%|βββββββββ | 82/93 [00:41<00:07, 1.50it/s]
89%|βββββββββ | 83/93 [00:42<00:06, 1.64it/s]
90%|βββββββββ | 84/93 [00:42<00:05, 1.72it/s]
91%|ββββββββββ| 85/93 [00:43<00:04, 1.82it/s]
92%|ββββββββββ| 86/93 [00:43<00:03, 1.95it/s]
94%|ββββββββββ| 87/93 [00:44<00:03, 1.89it/s]
95%|ββββββββββ| 88/93 [00:44<00:02, 1.92it/s]
96%|ββββββββββ| 89/93 [00:45<00:02, 1.98it/s]
97%|ββββββββββ| 90/93 [00:45<00:01, 2.10it/s]
98%|ββββββββββ| 91/93 [00:46<00:00, 2.00it/s]
99%|ββββββββββ| 92/93 [00:46<00:00, 2.07it/s]
100%|ββββββββββ| 93/93 [00:47<00:00, 2.07it/s]
100%|ββββββββββ| 93/93 [00:47<00:00, 1.96it/s]
***** predict_test_fr_FR metrics *****
predict_ex_match_acc = 0.6725
predict_ex_match_acc_stderr = 0.0086
predict_intent_acc = 0.8716
predict_intent_acc_stderr = 0.0061
predict_loss = 0.1494
predict_runtime = 0:00:47.79
predict_samples = 2974
predict_samples_per_second = 62.224
predict_slot_micro_f1 = 0.76
predict_slot_micro_f1_stderr = 0.0029
predict_steps_per_second = 1.946
06/10/2024 22:40:14 - INFO - __main__ - *** test_pt_PT ***
[INFO|trainer.py:718] 2024-06-10 22:40:14,689 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:40:14,691 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:40:14,692 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:40:14,692 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:24, 3.77it/s]
3%|β | 3/93 [00:00<00:28, 3.12it/s]
4%|β | 4/93 [00:01<00:29, 3.00it/s]
5%|β | 5/93 [00:01<00:34, 2.52it/s]
6%|β | 6/93 [00:02<00:35, 2.42it/s]
8%|β | 7/93 [00:02<00:39, 2.17it/s]
9%|β | 8/93 [00:03<00:37, 2.25it/s]
10%|β | 9/93 [00:03<00:38, 2.18it/s]
11%|β | 10/93 [00:04<00:38, 2.17it/s]
12%|ββ | 11/93 [00:04<00:38, 2.15it/s]
13%|ββ | 12/93 [00:05<00:36, 2.20it/s]
14%|ββ | 13/93 [00:05<00:36, 2.17it/s]
15%|ββ | 14/93 [00:06<00:40, 1.96it/s]
16%|ββ | 15/93 [00:06<00:38, 2.03it/s]
17%|ββ | 16/93 [00:07<00:36, 2.13it/s]
18%|ββ | 17/93 [00:07<00:37, 2.04it/s]
19%|ββ | 18/93 [00:07<00:34, 2.18it/s]
20%|ββ | 19/93 [00:08<00:34, 2.15it/s]
22%|βββ | 20/93 [00:08<00:32, 2.24it/s]
23%|βββ | 21/93 [00:09<00:31, 2.30it/s]
24%|βββ | 22/93 [00:09<00:32, 2.17it/s]
25%|βββ | 23/93 [00:10<00:32, 2.17it/s]
26%|βββ | 24/93 [00:10<00:30, 2.25it/s]
27%|βββ | 25/93 [00:11<00:31, 2.19it/s]
28%|βββ | 26/93 [00:11<00:30, 2.21it/s]
29%|βββ | 27/93 [00:12<00:29, 2.24it/s]
30%|βββ | 28/93 [00:12<00:28, 2.32it/s]
31%|βββ | 29/93 [00:12<00:27, 2.31it/s]
32%|ββββ | 30/93 [00:13<00:28, 2.24it/s]
33%|ββββ | 31/93 [00:13<00:27, 2.29it/s]
34%|ββββ | 32/93 [00:14<00:27, 2.26it/s]
35%|ββββ | 33/93 [00:14<00:26, 2.23it/s]
37%|ββββ | 34/93 [00:15<00:29, 2.02it/s]
38%|ββββ | 35/93 [00:15<00:27, 2.11it/s]
39%|ββββ | 36/93 [00:15<00:24, 2.33it/s]
40%|ββββ | 37/93 [00:16<00:23, 2.39it/s]
41%|ββββ | 38/93 [00:16<00:25, 2.18it/s]
42%|βββββ | 39/93 [00:17<00:23, 2.25it/s]
43%|βββββ | 40/93 [00:17<00:24, 2.19it/s]
44%|βββββ | 41/93 [00:18<00:26, 1.99it/s]
45%|βββββ | 42/93 [00:19<00:26, 1.92it/s]
46%|βββββ | 43/93 [00:19<00:27, 1.81it/s]
47%|βββββ | 44/93 [00:20<00:25, 1.91it/s]
48%|βββββ | 45/93 [00:20<00:23, 2.07it/s]
49%|βββββ | 46/93 [00:21<00:23, 2.01it/s]
51%|βββββ | 47/93 [00:21<00:24, 1.86it/s]
52%|ββββββ | 48/93 [00:22<00:23, 1.91it/s]
53%|ββββββ | 49/93 [00:22<00:20, 2.14it/s]
54%|ββββββ | 50/93 [00:23<00:21, 2.00it/s]
55%|ββββββ | 51/93 [00:23<00:20, 2.02it/s]
56%|ββββββ | 52/93 [00:24<00:20, 1.99it/s]
57%|ββββββ | 53/93 [00:24<00:20, 1.99it/s]
58%|ββββββ | 54/93 [00:25<00:20, 1.87it/s]
59%|ββββββ | 55/93 [00:25<00:20, 1.88it/s]
60%|ββββββ | 56/93 [00:26<00:17, 2.12it/s]
61%|βββββββ | 57/93 [00:26<00:16, 2.15it/s]
62%|βββββββ | 58/93 [00:26<00:15, 2.24it/s]
63%|βββββββ | 59/93 [00:27<00:15, 2.23it/s]
65%|βββββββ | 60/93 [00:27<00:15, 2.11it/s]
66%|βββββββ | 61/93 [00:28<00:14, 2.29it/s]
67%|βββββββ | 62/93 [00:28<00:14, 2.19it/s]
68%|βββββββ | 63/93 [00:29<00:13, 2.19it/s]
69%|βββββββ | 64/93 [00:31<00:27, 1.07it/s]
70%|βββββββ | 65/93 [00:31<00:22, 1.27it/s]
71%|βββββββ | 66/93 [00:32<00:20, 1.35it/s]
72%|ββββββββ | 67/93 [00:32<00:17, 1.52it/s]
73%|ββββββββ | 68/93 [00:33<00:17, 1.47it/s]
74%|ββββββββ | 69/93 [00:34<00:15, 1.59it/s]
75%|ββββββββ | 70/93 [00:34<00:14, 1.63it/s]
76%|ββββββββ | 71/93 [00:35<00:12, 1.78it/s]
77%|ββββββββ | 72/93 [00:35<00:11, 1.86it/s]
78%|ββββββββ | 73/93 [00:35<00:09, 2.02it/s]
80%|ββββββββ | 74/93 [00:36<00:09, 2.00it/s]
81%|ββββββββ | 75/93 [00:36<00:08, 2.09it/s]
82%|βββββββββ | 76/93 [00:37<00:08, 2.08it/s]
83%|βββββββββ | 77/93 [00:37<00:07, 2.13it/s]
84%|βββββββββ | 78/93 [00:38<00:07, 2.12it/s]
85%|βββββββββ | 79/93 [00:38<00:06, 2.02it/s]
86%|βββββββββ | 80/93 [00:39<00:06, 1.87it/s]
87%|βββββββββ | 81/93 [00:39<00:06, 1.87it/s]
88%|βββββββββ | 82/93 [00:40<00:05, 2.03it/s]
89%|βββββββββ | 83/93 [00:40<00:04, 2.04it/s]
90%|βββββββββ | 84/93 [00:41<00:04, 1.94it/s]
91%|ββββββββββ| 85/93 [00:41<00:03, 2.03it/s]
92%|ββββββββββ| 86/93 [00:42<00:03, 2.15it/s]
94%|ββββββββββ| 87/93 [00:42<00:02, 2.11it/s]
95%|ββββββββββ| 88/93 [00:43<00:02, 2.05it/s]
96%|ββββββββββ| 89/93 [00:43<00:01, 2.00it/s]
97%|ββββββββββ| 90/93 [00:44<00:01, 2.06it/s]
98%|ββββββββββ| 91/93 [00:44<00:01, 2.00it/s]
99%|ββββββββββ| 92/93 [00:45<00:00, 2.08it/s]
100%|ββββββββββ| 93/93 [00:45<00:00, 2.19it/s]
100%|ββββββββββ| 93/93 [00:45<00:00, 2.03it/s]
***** predict_test_pt_PT metrics *****
predict_ex_match_acc = 0.688
predict_ex_match_acc_stderr = 0.0085
predict_intent_acc = 0.8742
predict_intent_acc_stderr = 0.0061
predict_loss = 0.1455
predict_runtime = 0:00:46.29
predict_samples = 2974
predict_samples_per_second = 64.24
predict_slot_micro_f1 = 0.777
predict_slot_micro_f1_stderr = 0.0029
predict_steps_per_second = 2.009
06/10/2024 22:41:01 - INFO - __main__ - *** test_pl_PL ***
[INFO|trainer.py:718] 2024-06-10 22:41:01,217 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:41:01,222 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:41:01,222 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:41:01,223 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:14, 6.19it/s]
3%|β | 3/93 [00:00<00:22, 4.04it/s]
4%|β | 4/93 [00:01<00:24, 3.63it/s]
5%|β | 5/93 [00:01<00:32, 2.71it/s]
6%|β | 6/93 [00:01<00:32, 2.67it/s]
8%|β | 7/93 [00:02<00:32, 2.64it/s]
9%|β | 8/93 [00:02<00:32, 2.60it/s]
10%|β | 9/93 [00:03<00:32, 2.62it/s]
11%|β | 10/93 [00:03<00:31, 2.62it/s]
12%|ββ | 11/93 [00:03<00:33, 2.44it/s]
13%|ββ | 12/93 [00:04<00:33, 2.44it/s]
14%|ββ | 13/93 [00:04<00:32, 2.45it/s]
15%|ββ | 14/93 [00:05<00:35, 2.26it/s]
16%|ββ | 15/93 [00:05<00:34, 2.26it/s]
17%|ββ | 16/93 [00:06<00:32, 2.37it/s]
18%|ββ | 17/93 [00:06<00:33, 2.28it/s]
19%|ββ | 18/93 [00:06<00:31, 2.37it/s]
20%|ββ | 19/93 [00:07<00:31, 2.34it/s]
22%|βββ | 20/93 [00:07<00:29, 2.49it/s]
23%|βββ | 21/93 [00:08<00:28, 2.52it/s]
24%|βββ | 22/93 [00:08<00:30, 2.33it/s]
25%|βββ | 23/93 [00:09<00:28, 2.42it/s]
26%|βββ | 24/93 [00:09<00:29, 2.36it/s]
27%|βββ | 25/93 [00:10<00:33, 2.05it/s]
28%|βββ | 26/93 [00:10<00:33, 2.00it/s]
29%|βββ | 27/93 [00:11<00:30, 2.16it/s]
30%|βββ | 28/93 [00:11<00:28, 2.31it/s]
31%|βββ | 29/93 [00:11<00:26, 2.44it/s]
32%|ββββ | 30/93 [00:12<00:27, 2.32it/s]
33%|ββββ | 31/93 [00:12<00:26, 2.37it/s]
34%|ββββ | 32/93 [00:12<00:24, 2.44it/s]
35%|ββββ | 33/93 [00:13<00:24, 2.40it/s]
37%|ββββ | 34/93 [00:13<00:24, 2.44it/s]
38%|ββββ | 35/93 [00:14<00:22, 2.55it/s]
39%|ββββ | 36/93 [00:14<00:20, 2.76it/s]
40%|ββββ | 37/93 [00:14<00:19, 2.89it/s]
41%|ββββ | 38/93 [00:15<00:21, 2.57it/s]
42%|βββββ | 39/93 [00:15<00:20, 2.66it/s]
43%|βββββ | 40/93 [00:16<00:20, 2.58it/s]
44%|βββββ | 41/93 [00:16<00:21, 2.42it/s]
45%|βββββ | 42/93 [00:16<00:21, 2.41it/s]
46%|βββββ | 43/93 [00:17<00:23, 2.13it/s]
47%|βββββ | 44/93 [00:17<00:21, 2.26it/s]
48%|βββββ | 45/93 [00:18<00:20, 2.39it/s]
49%|βββββ | 46/93 [00:18<00:20, 2.28it/s]
51%|βββββ | 47/93 [00:19<00:20, 2.23it/s]
52%|ββββββ | 48/93 [00:19<00:19, 2.29it/s]
53%|ββββββ | 49/93 [00:19<00:18, 2.44it/s]
54%|ββββββ | 50/93 [00:20<00:18, 2.32it/s]
55%|ββββββ | 51/93 [00:20<00:18, 2.25it/s]
56%|ββββββ | 52/93 [00:21<00:19, 2.14it/s]
57%|ββββββ | 53/93 [00:21<00:18, 2.12it/s]
58%|ββββββ | 54/93 [00:22<00:17, 2.21it/s]
59%|ββββββ | 55/93 [00:22<00:15, 2.38it/s]
60%|ββββββ | 56/93 [00:22<00:14, 2.57it/s]
61%|βββββββ | 57/93 [00:23<00:14, 2.52it/s]
62%|βββββββ | 58/93 [00:23<00:13, 2.61it/s]
63%|βββββββ | 59/93 [00:24<00:13, 2.58it/s]
65%|βββββββ | 60/93 [00:24<00:13, 2.48it/s]
66%|βββββββ | 61/93 [00:24<00:12, 2.51it/s]
67%|βββββββ | 62/93 [00:25<00:13, 2.31it/s]
68%|βββββββ | 63/93 [00:25<00:12, 2.44it/s]
69%|βββββββ | 64/93 [00:27<00:25, 1.12it/s]
70%|βββββββ | 65/93 [00:28<00:20, 1.34it/s]
71%|βββββββ | 66/93 [00:28<00:17, 1.57it/s]
72%|ββββββββ | 67/93 [00:29<00:14, 1.76it/s]
73%|ββββββββ | 68/93 [00:29<00:14, 1.72it/s]
74%|ββββββββ | 69/93 [00:30<00:12, 1.90it/s]
75%|ββββββββ | 70/93 [00:30<00:11, 2.04it/s]
76%|ββββββββ | 71/93 [00:30<00:10, 2.09it/s]
77%|ββββββββ | 72/93 [00:31<00:10, 2.09it/s]
78%|ββββββββ | 73/93 [00:31<00:08, 2.25it/s]
80%|ββββββββ | 74/93 [00:32<00:08, 2.21it/s]
81%|ββββββββ | 75/93 [00:32<00:07, 2.40it/s]
82%|βββββββββ | 76/93 [00:33<00:07, 2.36it/s]
83%|βββββββββ | 77/93 [00:33<00:06, 2.50it/s]
84%|βββββββββ | 78/93 [00:33<00:05, 2.68it/s]
85%|βββββββββ | 79/93 [00:34<00:06, 2.25it/s]
86%|βββββββββ | 80/93 [00:34<00:06, 2.01it/s]
87%|βββββββββ | 81/93 [00:35<00:05, 2.18it/s]
88%|βββββββββ | 82/93 [00:35<00:04, 2.33it/s]
89%|βββββββββ | 83/93 [00:36<00:04, 2.39it/s]
90%|βββββββββ | 84/93 [00:36<00:04, 2.21it/s]
91%|ββββββββββ| 85/93 [00:37<00:03, 2.19it/s]
92%|ββββββββββ| 86/93 [00:37<00:03, 2.30it/s]
94%|ββββββββββ| 87/93 [00:37<00:02, 2.36it/s]
95%|ββββββββββ| 88/93 [00:38<00:02, 2.41it/s]
96%|ββββββββββ| 89/93 [00:38<00:01, 2.35it/s]
97%|ββββββββββ| 90/93 [00:39<00:01, 2.42it/s]
98%|ββββββββββ| 91/93 [00:39<00:00, 2.30it/s]
99%|ββββββββββ| 92/93 [00:39<00:00, 2.29it/s]
100%|ββββββββββ| 93/93 [00:40<00:00, 2.45it/s]
100%|ββββββββββ| 93/93 [00:40<00:00, 2.30it/s]
***** predict_test_pl_PL metrics *****
predict_ex_match_acc = 0.6577
predict_ex_match_acc_stderr = 0.0087
predict_intent_acc = 0.8753
predict_intent_acc_stderr = 0.0061
predict_loss = 0.1657
predict_runtime = 0:00:41.03
predict_samples = 2974
predict_samples_per_second = 72.472
predict_slot_micro_f1 = 0.7381
predict_slot_micro_f1_stderr = 0.0034
predict_steps_per_second = 2.266
06/10/2024 22:41:42 - INFO - __main__ - *** test_nl_NL ***
[INFO|trainer.py:718] 2024-06-10 22:41:42,453 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:41:42,456 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:41:42,456 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:41:42,457 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:22, 4.13it/s]
3%|β | 3/93 [00:00<00:26, 3.35it/s]
4%|β | 4/93 [00:01<00:28, 3.15it/s]
5%|β | 5/93 [00:01<00:33, 2.60it/s]
6%|β | 6/93 [00:02<00:33, 2.60it/s]
8%|β | 7/93 [00:02<00:32, 2.63it/s]
9%|β | 8/93 [00:02<00:33, 2.57it/s]
10%|β | 9/93 [00:03<00:34, 2.45it/s]
11%|β | 10/93 [00:03<00:33, 2.48it/s]
12%|ββ | 11/93 [00:04<00:32, 2.49it/s]
13%|ββ | 12/93 [00:04<00:32, 2.46it/s]
14%|ββ | 13/93 [00:04<00:33, 2.41it/s]
15%|ββ | 14/93 [00:05<00:35, 2.20it/s]
16%|ββ | 15/93 [00:05<00:35, 2.22it/s]
17%|ββ | 16/93 [00:06<00:35, 2.19it/s]
18%|ββ | 17/93 [00:06<00:35, 2.16it/s]
19%|ββ | 18/93 [00:07<00:35, 2.11it/s]
20%|ββ | 19/93 [00:07<00:34, 2.14it/s]
22%|βββ | 20/93 [00:08<00:33, 2.19it/s]
23%|βββ | 21/93 [00:08<00:31, 2.28it/s]
24%|βββ | 22/93 [00:09<00:33, 2.14it/s]
25%|βββ | 23/93 [00:09<00:31, 2.26it/s]
26%|βββ | 24/93 [00:09<00:29, 2.37it/s]
27%|βββ | 25/93 [00:10<00:29, 2.33it/s]
28%|βββ | 26/93 [00:10<00:29, 2.28it/s]
29%|βββ | 27/93 [00:11<00:28, 2.33it/s]
30%|βββ | 28/93 [00:11<00:27, 2.37it/s]
31%|βββ | 29/93 [00:12<00:26, 2.41it/s]
32%|ββββ | 30/93 [00:12<00:27, 2.30it/s]
33%|ββββ | 31/93 [00:13<00:29, 2.09it/s]
34%|ββββ | 32/93 [00:13<00:29, 2.04it/s]
35%|ββββ | 33/93 [00:14<00:29, 2.01it/s]
37%|ββββ | 34/93 [00:14<00:28, 2.09it/s]
38%|ββββ | 35/93 [00:15<00:27, 2.14it/s]
39%|ββββ | 36/93 [00:15<00:24, 2.31it/s]
40%|ββββ | 37/93 [00:15<00:23, 2.41it/s]
41%|ββββ | 38/93 [00:16<00:24, 2.26it/s]
42%|βββββ | 39/93 [00:16<00:24, 2.21it/s]
43%|βββββ | 40/93 [00:17<00:23, 2.23it/s]
44%|βββββ | 41/93 [00:17<00:23, 2.24it/s]
45%|βββββ | 42/93 [00:18<00:24, 2.08it/s]
46%|βββββ | 43/93 [00:18<00:26, 1.91it/s]
47%|βββββ | 44/93 [00:19<00:23, 2.06it/s]
48%|βββββ | 45/93 [00:19<00:22, 2.17it/s]
49%|βββββ | 46/93 [00:20<00:22, 2.06it/s]
51%|βββββ | 47/93 [00:20<00:22, 2.03it/s]
52%|ββββββ | 48/93 [00:21<00:21, 2.13it/s]
53%|ββββββ | 49/93 [00:21<00:19, 2.22it/s]
54%|ββββββ | 50/93 [00:22<00:19, 2.18it/s]
55%|ββββββ | 51/93 [00:22<00:19, 2.17it/s]
56%|ββββββ | 52/93 [00:22<00:18, 2.19it/s]
57%|ββββββ | 53/93 [00:23<00:19, 2.06it/s]
58%|ββββββ | 54/93 [00:23<00:18, 2.09it/s]
59%|ββββββ | 55/93 [00:24<00:18, 2.08it/s]
60%|ββββββ | 56/93 [00:24<00:17, 2.13it/s]
61%|βββββββ | 57/93 [00:25<00:17, 2.08it/s]
62%|βββββββ | 58/93 [00:25<00:15, 2.21it/s]
63%|βββββββ | 59/93 [00:26<00:15, 2.19it/s]
65%|βββββββ | 60/93 [00:26<00:15, 2.15it/s]
66%|βββββββ | 61/93 [00:27<00:13, 2.29it/s]
67%|βββββββ | 62/93 [00:27<00:14, 2.13it/s]
68%|βββββββ | 63/93 [00:28<00:13, 2.16it/s]
69%|βββββββ | 64/93 [00:30<00:26, 1.08it/s]
70%|βββββββ | 65/93 [00:30<00:21, 1.29it/s]
71%|βββββββ | 66/93 [00:30<00:18, 1.49it/s]
72%|ββββββββ | 67/93 [00:31<00:16, 1.60it/s]
73%|ββββββββ | 68/93 [00:31<00:14, 1.73it/s]
74%|ββββββββ | 69/93 [00:32<00:12, 1.85it/s]
75%|ββββββββ | 70/93 [00:32<00:12, 1.88it/s]
76%|ββββββββ | 71/93 [00:33<00:10, 2.02it/s]
77%|ββββββββ | 72/93 [00:33<00:10, 1.97it/s]
78%|ββββββββ | 73/93 [00:34<00:09, 2.12it/s]
80%|ββββββββ | 74/93 [00:34<00:09, 2.01it/s]
81%|ββββββββ | 75/93 [00:35<00:08, 2.13it/s]
82%|βββββββββ | 76/93 [00:35<00:08, 2.11it/s]
83%|βββββββββ | 77/93 [00:36<00:07, 2.17it/s]
84%|βββββββββ | 78/93 [00:36<00:07, 2.11it/s]
85%|βββββββββ | 79/93 [00:37<00:07, 1.87it/s]
86%|βββββββββ | 80/93 [00:37<00:07, 1.74it/s]
87%|βββββββββ | 81/93 [00:38<00:06, 1.87it/s]
88%|βββββββββ | 82/93 [00:38<00:05, 2.07it/s]
89%|βββββββββ | 83/93 [00:39<00:04, 2.15it/s]
90%|βββββββββ | 84/93 [00:39<00:04, 1.99it/s]
91%|ββββββββββ| 85/93 [00:40<00:03, 2.10it/s]
92%|ββββββββββ| 86/93 [00:40<00:03, 2.19it/s]
94%|ββββββββββ| 87/93 [00:41<00:02, 2.14it/s]
95%|ββββββββββ| 88/93 [00:41<00:02, 2.22it/s]
96%|ββββββββββ| 89/93 [00:41<00:01, 2.19it/s]
97%|ββββββββββ| 90/93 [00:42<00:01, 2.26it/s]
98%|ββββββββββ| 91/93 [00:42<00:00, 2.08it/s]
99%|ββββββββββ| 92/93 [00:43<00:00, 2.13it/s]
100%|ββββββββββ| 93/93 [00:43<00:00, 2.17it/s]
100%|ββββββββββ| 93/93 [00:44<00:00, 2.11it/s]
***** predict_test_nl_NL metrics *****
predict_ex_match_acc = 0.6974
predict_ex_match_acc_stderr = 0.0084
predict_intent_acc = 0.8769
predict_intent_acc_stderr = 0.006
predict_loss = 0.1494
predict_runtime = 0:00:44.48
predict_samples = 2974
predict_samples_per_second = 66.861
predict_slot_micro_f1 = 0.7816
predict_slot_micro_f1_stderr = 0.0029
predict_steps_per_second = 2.091
06/10/2024 22:42:27 - INFO - __main__ - *** test_hu_HU ***
[INFO|trainer.py:718] 2024-06-10 22:42:27,132 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:42:27,134 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:42:27,134 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:42:27,135 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:20, 4.36it/s]
3%|β | 3/93 [00:00<00:25, 3.54it/s]
4%|β | 4/93 [00:01<00:29, 3.05it/s]
5%|β | 5/93 [00:01<00:32, 2.67it/s]
6%|β | 6/93 [00:02<00:32, 2.64it/s]
8%|β | 7/93 [00:02<00:32, 2.63it/s]
9%|β | 8/93 [00:02<00:33, 2.53it/s]
10%|β | 9/93 [00:03<00:34, 2.42it/s]
11%|β | 10/93 [00:03<00:33, 2.50it/s]
12%|ββ | 11/93 [00:04<00:35, 2.31it/s]
13%|ββ | 12/93 [00:04<00:33, 2.44it/s]
14%|ββ | 13/93 [00:04<00:32, 2.46it/s]
15%|ββ | 14/93 [00:05<00:35, 2.24it/s]
16%|ββ | 15/93 [00:05<00:33, 2.33it/s]
17%|ββ | 16/93 [00:06<00:31, 2.45it/s]
18%|ββ | 17/93 [00:06<00:33, 2.29it/s]
19%|ββ | 18/93 [00:07<00:31, 2.40it/s]
20%|ββ | 19/93 [00:07<00:30, 2.40it/s]
22%|βββ | 20/93 [00:07<00:30, 2.40it/s]
23%|βββ | 21/93 [00:08<00:28, 2.55it/s]
24%|βββ | 22/93 [00:08<00:29, 2.39it/s]
25%|βββ | 23/93 [00:09<00:28, 2.47it/s]
26%|βββ | 24/93 [00:09<00:26, 2.57it/s]
27%|βββ | 25/93 [00:10<00:30, 2.25it/s]
28%|βββ | 26/93 [00:10<00:27, 2.42it/s]
29%|βββ | 27/93 [00:10<00:26, 2.47it/s]
30%|βββ | 28/93 [00:11<00:25, 2.56it/s]
31%|βββ | 29/93 [00:11<00:24, 2.56it/s]
32%|ββββ | 30/93 [00:12<00:29, 2.16it/s]
33%|ββββ | 31/93 [00:12<00:28, 2.17it/s]
34%|ββββ | 32/93 [00:13<00:26, 2.26it/s]
35%|ββββ | 33/93 [00:13<00:27, 2.21it/s]
37%|ββββ | 34/93 [00:13<00:26, 2.19it/s]
38%|ββββ | 35/93 [00:14<00:25, 2.26it/s]
39%|ββββ | 36/93 [00:14<00:23, 2.46it/s]
40%|ββββ | 37/93 [00:14<00:20, 2.76it/s]
41%|ββββ | 38/93 [00:15<00:21, 2.54it/s]
42%|βββββ | 39/93 [00:15<00:20, 2.62it/s]
43%|βββββ | 40/93 [00:16<00:20, 2.63it/s]
44%|βββββ | 41/93 [00:16<00:20, 2.51it/s]
45%|βββββ | 42/93 [00:17<00:21, 2.34it/s]
46%|βββββ | 43/93 [00:17<00:21, 2.31it/s]
47%|βββββ | 44/93 [00:17<00:20, 2.40it/s]
48%|βββββ | 45/93 [00:18<00:19, 2.41it/s]
49%|βββββ | 46/93 [00:18<00:19, 2.36it/s]
51%|βββββ | 47/93 [00:19<00:21, 2.17it/s]
52%|ββββββ | 48/93 [00:19<00:19, 2.36it/s]
53%|ββββββ | 49/93 [00:19<00:17, 2.54it/s]
54%|ββββββ | 50/93 [00:20<00:17, 2.50it/s]
55%|ββββββ | 51/93 [00:20<00:16, 2.52it/s]
56%|ββββββ | 52/93 [00:21<00:16, 2.44it/s]
57%|ββββββ | 53/93 [00:21<00:17, 2.33it/s]
58%|ββββββ | 54/93 [00:22<00:17, 2.21it/s]
59%|ββββββ | 55/93 [00:22<00:17, 2.19it/s]
60%|ββββββ | 56/93 [00:22<00:15, 2.40it/s]
61%|βββββββ | 57/93 [00:23<00:15, 2.36it/s]
62%|βββββββ | 58/93 [00:23<00:13, 2.54it/s]
63%|βββββββ | 59/93 [00:24<00:12, 2.69it/s]
65%|βββββββ | 60/93 [00:24<00:12, 2.65it/s]
66%|βββββββ | 61/93 [00:24<00:12, 2.64it/s]
67%|βββββββ | 62/93 [00:25<00:12, 2.42it/s]
68%|βββββββ | 63/93 [00:25<00:12, 2.50it/s]
69%|βββββββ | 64/93 [00:27<00:25, 1.12it/s]
70%|βββββββ | 65/93 [00:28<00:20, 1.35it/s]
71%|βββββββ | 66/93 [00:28<00:17, 1.57it/s]
72%|ββββββββ | 67/93 [00:28<00:14, 1.77it/s]
73%|ββββββββ | 68/93 [00:29<00:13, 1.88it/s]
74%|ββββββββ | 69/93 [00:29<00:11, 2.12it/s]
75%|ββββββββ | 70/93 [00:30<00:09, 2.34it/s]
76%|ββββββββ | 71/93 [00:30<00:09, 2.40it/s]
77%|ββββββββ | 72/93 [00:30<00:09, 2.25it/s]
78%|ββββββββ | 73/93 [00:31<00:08, 2.46it/s]
80%|ββββββββ | 74/93 [00:31<00:08, 2.25it/s]
81%|ββββββββ | 75/93 [00:32<00:07, 2.42it/s]
82%|βββββββββ | 76/93 [00:32<00:07, 2.35it/s]
83%|βββββββββ | 77/93 [00:32<00:06, 2.45it/s]
84%|βββββββββ | 78/93 [00:33<00:05, 2.58it/s]
85%|βββββββββ | 79/93 [00:33<00:06, 2.12it/s]
86%|βββββββββ | 80/93 [00:34<00:06, 1.98it/s]
87%|βββββββββ | 81/93 [00:34<00:05, 2.18it/s]
88%|βββββββββ | 82/93 [00:35<00:04, 2.35it/s]
89%|βββββββββ | 83/93 [00:35<00:04, 2.35it/s]
90%|βββββββββ | 84/93 [00:36<00:04, 2.19it/s]
91%|ββββββββββ| 85/93 [00:36<00:03, 2.25it/s]
92%|ββββββββββ| 86/93 [00:37<00:03, 2.30it/s]
94%|ββββββββββ| 87/93 [00:37<00:02, 2.28it/s]
95%|ββββββββββ| 88/93 [00:37<00:02, 2.28it/s]
96%|ββββββββββ| 89/93 [00:38<00:01, 2.22it/s]
97%|ββββββββββ| 90/93 [00:38<00:01, 2.25it/s]
98%|ββββββββββ| 91/93 [00:39<00:00, 2.10it/s]
99%|ββββββββββ| 92/93 [00:39<00:00, 2.18it/s]
100%|ββββββββββ| 93/93 [00:40<00:00, 2.29it/s]
100%|ββββββββββ| 93/93 [00:40<00:00, 2.29it/s]
***** predict_test_hu_HU metrics *****
predict_ex_match_acc = 0.6866
predict_ex_match_acc_stderr = 0.0085
predict_intent_acc = 0.8668
predict_intent_acc_stderr = 0.0062
predict_loss = 0.1564
predict_runtime = 0:00:41.00
predict_samples = 2974
predict_samples_per_second = 72.526
predict_slot_micro_f1 = 0.7878
predict_slot_micro_f1_stderr = 0.0031
predict_steps_per_second = 2.268
06/10/2024 22:43:08 - INFO - __main__ - *** test_ru_RU ***
[INFO|trainer.py:718] 2024-06-10 22:43:08,343 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:43:08,345 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:43:08,345 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:43:08,346 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:18, 4.79it/s]
3%|β | 3/93 [00:00<00:24, 3.73it/s]
4%|β | 4/93 [00:01<00:26, 3.39it/s]
5%|β | 5/93 [00:01<00:29, 2.95it/s]
6%|β | 6/93 [00:01<00:30, 2.83it/s]
8%|β | 7/93 [00:02<00:31, 2.70it/s]
9%|β | 8/93 [00:02<00:32, 2.65it/s]
10%|β | 9/93 [00:03<00:32, 2.58it/s]
11%|β | 10/93 [00:03<00:33, 2.49it/s]
12%|ββ | 11/93 [00:03<00:32, 2.53it/s]
13%|ββ | 12/93 [00:04<00:32, 2.52it/s]
14%|ββ | 13/93 [00:04<00:31, 2.52it/s]
15%|ββ | 14/93 [00:05<00:36, 2.19it/s]
16%|ββ | 15/93 [00:05<00:35, 2.22it/s]
17%|ββ | 16/93 [00:06<00:32, 2.35it/s]
18%|ββ | 17/93 [00:06<00:33, 2.26it/s]
19%|ββ | 18/93 [00:06<00:31, 2.35it/s]
20%|ββ | 19/93 [00:07<00:31, 2.38it/s]
22%|βββ | 20/93 [00:07<00:29, 2.44it/s]
23%|βββ | 21/93 [00:08<00:28, 2.50it/s]
24%|βββ | 22/93 [00:08<00:31, 2.28it/s]
25%|βββ | 23/93 [00:09<00:30, 2.33it/s]
26%|βββ | 24/93 [00:09<00:28, 2.43it/s]
27%|βββ | 25/93 [00:10<00:30, 2.22it/s]
28%|βββ | 26/93 [00:10<00:30, 2.21it/s]
29%|βββ | 27/93 [00:10<00:28, 2.32it/s]
30%|βββ | 28/93 [00:11<00:27, 2.40it/s]
31%|βββ | 29/93 [00:11<00:25, 2.48it/s]
32%|ββββ | 30/93 [00:12<00:25, 2.45it/s]
33%|ββββ | 31/93 [00:12<00:26, 2.35it/s]
34%|ββββ | 32/93 [00:12<00:25, 2.42it/s]
35%|ββββ | 33/93 [00:13<00:24, 2.47it/s]
37%|ββββ | 34/93 [00:13<00:25, 2.34it/s]
38%|ββββ | 35/93 [00:14<00:24, 2.39it/s]
39%|ββββ | 36/93 [00:14<00:22, 2.54it/s]
40%|ββββ | 37/93 [00:14<00:20, 2.76it/s]
41%|ββββ | 38/93 [00:15<00:21, 2.56it/s]
42%|βββββ | 39/93 [00:15<00:21, 2.52it/s]
43%|βββββ | 40/93 [00:16<00:22, 2.36it/s]
44%|βββββ | 41/93 [00:16<00:22, 2.30it/s]
45%|βββββ | 42/93 [00:17<00:21, 2.32it/s]
46%|βββββ | 43/93 [00:17<00:23, 2.12it/s]
47%|βββββ | 44/93 [00:17<00:21, 2.27it/s]
48%|βββββ | 45/93 [00:18<00:21, 2.27it/s]
49%|βββββ | 46/93 [00:18<00:20, 2.28it/s]
51%|βββββ | 47/93 [00:19<00:24, 1.85it/s]
52%|ββββββ | 48/93 [00:19<00:21, 2.06it/s]
53%|ββββββ | 49/93 [00:20<00:19, 2.24it/s]
54%|ββββββ | 50/93 [00:20<00:18, 2.27it/s]
55%|ββββββ | 51/93 [00:21<00:19, 2.20it/s]
56%|ββββββ | 52/93 [00:21<00:18, 2.17it/s]
57%|ββββββ | 53/93 [00:22<00:19, 2.07it/s]
58%|ββββββ | 54/93 [00:22<00:18, 2.06it/s]
59%|ββββββ | 55/93 [00:23<00:17, 2.12it/s]
60%|ββββββ | 56/93 [00:23<00:15, 2.35it/s]
61%|βββββββ | 57/93 [00:23<00:15, 2.37it/s]
62%|βββββββ | 58/93 [00:24<00:13, 2.52it/s]
63%|βββββββ | 59/93 [00:24<00:14, 2.40it/s]
65%|βββββββ | 60/93 [00:25<00:14, 2.36it/s]
66%|βββββββ | 61/93 [00:25<00:13, 2.44it/s]
67%|βββββββ | 62/93 [00:25<00:13, 2.31it/s]
68%|βββββββ | 63/93 [00:26<00:12, 2.31it/s]
69%|βββββββ | 64/93 [00:28<00:26, 1.10it/s]
70%|βββββββ | 65/93 [00:28<00:21, 1.33it/s]
71%|βββββββ | 66/93 [00:29<00:17, 1.56it/s]
72%|ββββββββ | 67/93 [00:29<00:14, 1.76it/s]
73%|ββββββββ | 68/93 [00:30<00:14, 1.76it/s]
74%|ββββββββ | 69/93 [00:30<00:13, 1.84it/s]
75%|ββββββββ | 70/93 [00:31<00:11, 1.92it/s]
76%|ββββββββ | 71/93 [00:31<00:10, 2.05it/s]
77%|ββββββββ | 72/93 [00:32<00:10, 2.06it/s]
78%|ββββββββ | 73/93 [00:32<00:08, 2.26it/s]
80%|ββββββββ | 74/93 [00:32<00:09, 2.06it/s]
81%|ββββββββ | 75/93 [00:33<00:08, 2.22it/s]
82%|βββββββββ | 76/93 [00:33<00:07, 2.15it/s]
83%|βββββββββ | 77/93 [00:34<00:07, 2.11it/s]
84%|βββββββββ | 78/93 [00:34<00:07, 2.02it/s]
85%|βββββββββ | 79/93 [00:35<00:07, 1.98it/s]
86%|βββββββββ | 80/93 [00:35<00:06, 1.95it/s]
87%|βββββββββ | 81/93 [00:36<00:06, 1.86it/s]
88%|βββββββββ | 82/93 [00:36<00:05, 2.08it/s]
89%|βββββββββ | 83/93 [00:37<00:04, 2.23it/s]
90%|βββββββββ | 84/93 [00:37<00:04, 2.17it/s]
91%|ββββββββββ| 85/93 [00:38<00:03, 2.16it/s]
92%|ββββββββββ| 86/93 [00:38<00:03, 2.25it/s]
94%|ββββββββββ| 87/93 [00:39<00:02, 2.25it/s]
95%|ββββββββββ| 88/93 [00:39<00:02, 2.15it/s]
96%|ββββββββββ| 89/93 [00:40<00:01, 2.12it/s]
97%|ββββββββββ| 90/93 [00:40<00:01, 2.18it/s]
98%|ββββββββββ| 91/93 [00:41<00:00, 2.05it/s]
99%|ββββββββββ| 92/93 [00:41<00:00, 2.15it/s]
100%|ββββββββββ| 93/93 [00:41<00:00, 2.32it/s]
100%|ββββββββββ| 93/93 [00:41<00:00, 2.21it/s]
***** predict_test_ru_RU metrics *****
predict_ex_match_acc = 0.7028
predict_ex_match_acc_stderr = 0.0084
predict_intent_acc = 0.8769
predict_intent_acc_stderr = 0.006
predict_loss = 0.1495
predict_runtime = 0:00:42.44
predict_samples = 2974
predict_samples_per_second = 70.064
predict_slot_micro_f1 = 0.7874
predict_slot_micro_f1_stderr = 0.0031
predict_steps_per_second = 2.191
06/10/2024 22:43:50 - INFO - __main__ - *** test_tr_TR ***
[INFO|trainer.py:718] 2024-06-10 22:43:50,993 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:43:50,995 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:43:50,996 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:43:50,996 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:17, 5.33it/s]
3%|β | 3/93 [00:00<00:23, 3.85it/s]
4%|β | 4/93 [00:01<00:24, 3.70it/s]
5%|β | 5/93 [00:01<00:28, 3.10it/s]
6%|β | 6/93 [00:01<00:29, 2.96it/s]
8%|β | 7/93 [00:02<00:30, 2.80it/s]
9%|β | 8/93 [00:02<00:29, 2.87it/s]
10%|β | 9/93 [00:03<00:32, 2.55it/s]
11%|β | 10/93 [00:03<00:33, 2.47it/s]
12%|ββ | 11/93 [00:03<00:33, 2.48it/s]
13%|ββ | 12/93 [00:04<00:31, 2.55it/s]
14%|ββ | 13/93 [00:04<00:32, 2.49it/s]
15%|ββ | 14/93 [00:05<00:35, 2.23it/s]
16%|ββ | 15/93 [00:05<00:36, 2.12it/s]
17%|ββ | 16/93 [00:06<00:34, 2.25it/s]
18%|ββ | 17/93 [00:06<00:33, 2.30it/s]
19%|ββ | 18/93 [00:06<00:31, 2.39it/s]
20%|ββ | 19/93 [00:07<00:31, 2.37it/s]
22%|βββ | 20/93 [00:07<00:28, 2.53it/s]
23%|βββ | 21/93 [00:08<00:27, 2.59it/s]
24%|βββ | 22/93 [00:08<00:29, 2.41it/s]
25%|βββ | 23/93 [00:08<00:28, 2.47it/s]
26%|βββ | 24/93 [00:09<00:28, 2.43it/s]
27%|βββ | 25/93 [00:09<00:27, 2.49it/s]
28%|βββ | 26/93 [00:10<00:27, 2.42it/s]
29%|βββ | 27/93 [00:10<00:26, 2.45it/s]
30%|βββ | 28/93 [00:10<00:24, 2.65it/s]
31%|βββ | 29/93 [00:11<00:23, 2.75it/s]
32%|ββββ | 30/93 [00:11<00:23, 2.70it/s]
33%|ββββ | 31/93 [00:11<00:23, 2.59it/s]
34%|ββββ | 32/93 [00:12<00:23, 2.63it/s]
35%|ββββ | 33/93 [00:12<00:23, 2.56it/s]
37%|ββββ | 34/93 [00:13<00:23, 2.54it/s]
38%|ββββ | 35/93 [00:13<00:22, 2.61it/s]
39%|ββββ | 36/93 [00:13<00:20, 2.79it/s]
40%|ββββ | 37/93 [00:14<00:18, 3.07it/s]
41%|ββββ | 38/93 [00:14<00:20, 2.71it/s]
42%|βββββ | 39/93 [00:14<00:19, 2.74it/s]
43%|βββββ | 40/93 [00:15<00:19, 2.67it/s]
44%|βββββ | 41/93 [00:15<00:20, 2.58it/s]
45%|βββββ | 42/93 [00:16<00:20, 2.48it/s]
46%|βββββ | 43/93 [00:16<00:22, 2.24it/s]
47%|βββββ | 44/93 [00:17<00:20, 2.34it/s]
48%|βββββ | 45/93 [00:17<00:19, 2.49it/s]
49%|βββββ | 46/93 [00:17<00:19, 2.45it/s]
51%|βββββ | 47/93 [00:18<00:19, 2.41it/s]
52%|ββββββ | 48/93 [00:18<00:18, 2.41it/s]
53%|ββββββ | 49/93 [00:19<00:17, 2.58it/s]
54%|ββββββ | 50/93 [00:19<00:18, 2.32it/s]
55%|ββββββ | 51/93 [00:19<00:17, 2.37it/s]
56%|ββββββ | 52/93 [00:20<00:17, 2.35it/s]
57%|ββββββ | 53/93 [00:20<00:18, 2.17it/s]
58%|ββββββ | 54/93 [00:21<00:18, 2.10it/s]
59%|ββββββ | 55/93 [00:21<00:17, 2.22it/s]
60%|ββββββ | 56/93 [00:22<00:15, 2.41it/s]
61%|βββββββ | 57/93 [00:22<00:14, 2.44it/s]
62%|βββββββ | 58/93 [00:22<00:13, 2.60it/s]
63%|βββββββ | 59/93 [00:23<00:12, 2.72it/s]
65%|βββββββ | 60/93 [00:23<00:13, 2.52it/s]
66%|βββββββ | 61/93 [00:24<00:12, 2.56it/s]
67%|βββββββ | 62/93 [00:24<00:13, 2.36it/s]
68%|βββββββ | 63/93 [00:25<00:13, 2.30it/s]
69%|βββββββ | 64/93 [00:27<00:26, 1.11it/s]
70%|βββββββ | 65/93 [00:27<00:20, 1.36it/s]
71%|βββββββ | 66/93 [00:27<00:16, 1.59it/s]
72%|ββββββββ | 67/93 [00:28<00:14, 1.78it/s]
73%|ββββββββ | 68/93 [00:28<00:13, 1.81it/s]
74%|ββββββββ | 69/93 [00:29<00:12, 1.96it/s]
75%|ββββββββ | 70/93 [00:29<00:11, 2.09it/s]
76%|ββββββββ | 71/93 [00:29<00:09, 2.20it/s]
77%|ββββββββ | 72/93 [00:30<00:09, 2.22it/s]
78%|ββββββββ | 73/93 [00:30<00:08, 2.40it/s]
80%|ββββββββ | 74/93 [00:31<00:08, 2.33it/s]
81%|ββββββββ | 75/93 [00:31<00:07, 2.37it/s]
82%|βββββββββ | 76/93 [00:31<00:07, 2.39it/s]
83%|βββββββββ | 77/93 [00:32<00:06, 2.52it/s]
84%|βββββββββ | 78/93 [00:32<00:05, 2.57it/s]
85%|βββββββββ | 79/93 [00:33<00:06, 2.19it/s]
86%|βββββββββ | 80/93 [00:33<00:06, 2.01it/s]
87%|βββββββββ | 81/93 [00:34<00:05, 2.05it/s]
88%|βββββββββ | 82/93 [00:34<00:04, 2.23it/s]
89%|βββββββββ | 83/93 [00:35<00:04, 2.33it/s]
90%|βββββββββ | 84/93 [00:35<00:03, 2.25it/s]
91%|ββββββββββ| 85/93 [00:35<00:03, 2.27it/s]
92%|ββββββββββ| 86/93 [00:36<00:02, 2.36it/s]
94%|ββββββββββ| 87/93 [00:36<00:02, 2.32it/s]
95%|ββββββββββ| 88/93 [00:37<00:02, 2.29it/s]
96%|ββββββββββ| 89/93 [00:37<00:01, 2.33it/s]
97%|ββββββββββ| 90/93 [00:38<00:01, 2.40it/s]
98%|ββββββββββ| 91/93 [00:38<00:00, 2.26it/s]
99%|ββββββββββ| 92/93 [00:38<00:00, 2.32it/s]
100%|ββββββββββ| 93/93 [00:39<00:00, 2.48it/s]
100%|ββββββββββ| 93/93 [00:39<00:00, 2.35it/s]
***** predict_test_tr_TR metrics *****
predict_ex_match_acc = 0.6856
predict_ex_match_acc_stderr = 0.0085
predict_intent_acc = 0.8675
predict_intent_acc_stderr = 0.0062
predict_loss = 0.1582
predict_runtime = 0:00:39.89
predict_samples = 2974
predict_samples_per_second = 74.54
predict_slot_micro_f1 = 0.7798
predict_slot_micro_f1_stderr = 0.0033
predict_steps_per_second = 2.331
06/10/2024 22:44:31 - INFO - __main__ - *** test_vi_VN ***
[INFO|trainer.py:718] 2024-06-10 22:44:31,087 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:44:31,090 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:44:31,091 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:44:31,091 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:31, 2.86it/s]
3%|β | 3/93 [00:01<00:36, 2.44it/s]
4%|β | 4/93 [00:01<00:38, 2.33it/s]
5%|β | 5/93 [00:02<00:42, 2.05it/s]
6%|β | 6/93 [00:02<00:42, 2.06it/s]
8%|β | 7/93 [00:03<00:43, 1.97it/s]
9%|β | 8/93 [00:03<00:41, 2.03it/s]
10%|β | 9/93 [00:04<00:40, 2.07it/s]
11%|β | 10/93 [00:04<00:41, 2.00it/s]
12%|ββ | 11/93 [00:05<00:43, 1.89it/s]
13%|ββ | 12/93 [00:05<00:43, 1.85it/s]
14%|ββ | 13/93 [00:06<00:41, 1.94it/s]
15%|ββ | 14/93 [00:07<00:45, 1.72it/s]
16%|ββ | 15/93 [00:07<00:44, 1.74it/s]
17%|ββ | 16/93 [00:08<00:44, 1.73it/s]
18%|ββ | 17/93 [00:08<00:45, 1.69it/s]
19%|ββ | 18/93 [00:09<00:42, 1.78it/s]
20%|ββ | 19/93 [00:09<00:42, 1.75it/s]
22%|βββ | 20/93 [00:10<00:40, 1.80it/s]
23%|βββ | 21/93 [00:11<00:39, 1.82it/s]
24%|βββ | 22/93 [00:11<00:38, 1.84it/s]
25%|βββ | 23/93 [00:12<00:37, 1.87it/s]
26%|βββ | 24/93 [00:12<00:38, 1.82it/s]
27%|βββ | 25/93 [00:14<00:54, 1.25it/s]
28%|βββ | 26/93 [00:14<00:48, 1.38it/s]
29%|βββ | 27/93 [00:15<00:42, 1.55it/s]
30%|βββ | 28/93 [00:15<00:37, 1.73it/s]
31%|βββ | 29/93 [00:15<00:34, 1.84it/s]
32%|ββββ | 30/93 [00:16<00:33, 1.86it/s]
33%|ββββ | 31/93 [00:17<00:33, 1.83it/s]
34%|ββββ | 32/93 [00:17<00:33, 1.82it/s]
35%|ββββ | 33/93 [00:18<00:33, 1.78it/s]
37%|ββββ | 34/93 [00:18<00:36, 1.62it/s]
38%|ββββ | 35/93 [00:19<00:33, 1.75it/s]
39%|ββββ | 36/93 [00:19<00:33, 1.72it/s]
40%|ββββ | 37/93 [00:20<00:31, 1.80it/s]
41%|ββββ | 38/93 [00:21<00:35, 1.55it/s]
42%|βββββ | 39/93 [00:21<00:32, 1.64it/s]
43%|βββββ | 40/93 [00:22<00:32, 1.64it/s]
44%|βββββ | 41/93 [00:23<00:33, 1.55it/s]
45%|βββββ | 42/93 [00:23<00:33, 1.54it/s]
46%|βββββ | 43/93 [00:24<00:33, 1.49it/s]
47%|βββββ | 44/93 [00:25<00:32, 1.52it/s]
48%|βββββ | 45/93 [00:25<00:30, 1.59it/s]
49%|βββββ | 46/93 [00:26<00:30, 1.55it/s]
51%|βββββ | 47/93 [00:27<00:28, 1.61it/s]
52%|ββββββ | 48/93 [00:27<00:27, 1.65it/s]
53%|ββββββ | 49/93 [00:28<00:25, 1.72it/s]
54%|ββββββ | 50/93 [00:28<00:25, 1.71it/s]
55%|ββββββ | 51/93 [00:29<00:24, 1.75it/s]
56%|ββββββ | 52/93 [00:29<00:23, 1.75it/s]
57%|ββββββ | 53/93 [00:30<00:23, 1.69it/s]
58%|ββββββ | 54/93 [00:31<00:24, 1.57it/s]
59%|ββββββ | 55/93 [00:31<00:23, 1.65it/s]
60%|ββββββ | 56/93 [00:32<00:20, 1.81it/s]
61%|βββββββ | 57/93 [00:32<00:18, 1.90it/s]
62%|βββββββ | 58/93 [00:33<00:18, 1.90it/s]
63%|βββββββ | 59/93 [00:33<00:17, 1.92it/s]
65%|βββββββ | 60/93 [00:34<00:16, 1.95it/s]
66%|βββββββ | 61/93 [00:34<00:15, 2.06it/s]
67%|βββββββ | 62/93 [00:35<00:18, 1.72it/s]
68%|βββββββ | 63/93 [00:36<00:17, 1.67it/s]
69%|βββββββ | 64/93 [00:38<00:30, 1.05s/it]
70%|βββββββ | 65/93 [00:38<00:25, 1.10it/s]
71%|βββββββ | 66/93 [00:39<00:21, 1.25it/s]
72%|ββββββββ | 67/93 [00:39<00:19, 1.35it/s]
73%|ββββββββ | 68/93 [00:40<00:18, 1.32it/s]
74%|ββββββββ | 69/93 [00:41<00:16, 1.42it/s]
75%|ββββββββ | 70/93 [00:41<00:15, 1.51it/s]
76%|ββββββββ | 71/93 [00:42<00:14, 1.51it/s]
77%|ββββββββ | 72/93 [00:43<00:14, 1.50it/s]
78%|ββββββββ | 73/93 [00:43<00:12, 1.63it/s]
80%|ββββββββ | 74/93 [00:44<00:11, 1.70it/s]
81%|ββββββββ | 75/93 [00:44<00:10, 1.74it/s]
82%|βββββββββ | 76/93 [00:46<00:16, 1.02it/s]
83%|βββββββββ | 77/93 [00:47<00:13, 1.16it/s]
84%|βββββββββ | 78/93 [00:47<00:11, 1.31it/s]
85%|βββββββββ | 79/93 [00:48<00:10, 1.38it/s]
86%|βββββββββ | 80/93 [00:50<00:14, 1.10s/it]
87%|βββββββββ | 81/93 [00:51<00:11, 1.01it/s]
88%|βββββββββ | 82/93 [00:51<00:09, 1.20it/s]
89%|βββββββββ | 83/93 [00:52<00:07, 1.31it/s]
90%|βββββββββ | 84/93 [00:52<00:06, 1.41it/s]
91%|ββββββββββ| 85/93 [00:53<00:05, 1.47it/s]
92%|ββββββββββ| 86/93 [00:53<00:04, 1.61it/s]
94%|ββββββββββ| 87/93 [00:54<00:03, 1.53it/s]
95%|ββββββββββ| 88/93 [00:55<00:03, 1.61it/s]
96%|ββββββββββ| 89/93 [00:55<00:02, 1.71it/s]
97%|ββββββββββ| 90/93 [00:56<00:01, 1.73it/s]
98%|ββββββββββ| 91/93 [00:56<00:01, 1.67it/s]
99%|ββββββββββ| 92/93 [00:57<00:00, 1.73it/s]
100%|ββββββββββ| 93/93 [00:57<00:00, 1.82it/s]
100%|ββββββββββ| 93/93 [00:58<00:00, 1.60it/s]
***** predict_test_vi_VN metrics *****
predict_ex_match_acc = 0.6557
predict_ex_match_acc_stderr = 0.0087
predict_intent_acc = 0.8608
predict_intent_acc_stderr = 0.0063
predict_loss = 0.13
predict_runtime = 0:00:58.58
predict_samples = 2974
predict_samples_per_second = 50.767
predict_slot_micro_f1 = 0.7441
predict_slot_micro_f1_stderr = 0.0027
predict_steps_per_second = 1.588
06/10/2024 22:45:29 - INFO - __main__ - *** test_ar_SA ***
[INFO|trainer.py:718] 2024-06-10 22:45:29,940 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:45:29,942 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:45:29,943 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:45:29,943 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:16, 5.41it/s]
3%|β | 3/93 [00:00<00:24, 3.74it/s]
4%|β | 4/93 [00:01<00:25, 3.47it/s]
5%|β | 5/93 [00:01<00:30, 2.85it/s]
6%|β | 6/93 [00:01<00:30, 2.87it/s]
8%|β | 7/93 [00:02<00:30, 2.81it/s]
9%|β | 8/93 [00:02<00:30, 2.79it/s]
10%|β | 9/93 [00:03<00:33, 2.49it/s]
11%|β | 10/93 [00:03<00:33, 2.49it/s]
12%|ββ | 11/93 [00:03<00:33, 2.42it/s]
13%|ββ | 12/93 [00:04<00:32, 2.51it/s]
14%|ββ | 13/93 [00:04<00:32, 2.45it/s]
15%|ββ | 14/93 [00:05<00:36, 2.18it/s]
16%|ββ | 15/93 [00:05<00:36, 2.16it/s]
17%|ββ | 16/93 [00:06<00:34, 2.22it/s]
18%|ββ | 17/93 [00:06<00:33, 2.25it/s]
19%|ββ | 18/93 [00:07<00:33, 2.22it/s]
20%|ββ | 19/93 [00:07<00:33, 2.21it/s]
22%|βββ | 20/93 [00:07<00:30, 2.37it/s]
23%|βββ | 21/93 [00:08<00:29, 2.45it/s]
24%|βββ | 22/93 [00:08<00:29, 2.41it/s]
25%|βββ | 23/93 [00:09<00:29, 2.41it/s]
26%|βββ | 24/93 [00:09<00:29, 2.34it/s]
27%|βββ | 25/93 [00:09<00:26, 2.54it/s]
28%|βββ | 26/93 [00:10<00:26, 2.57it/s]
29%|βββ | 27/93 [00:10<00:24, 2.65it/s]
30%|βββ | 28/93 [00:10<00:23, 2.74it/s]
31%|βββ | 29/93 [00:11<00:24, 2.63it/s]
32%|ββββ | 30/93 [00:11<00:24, 2.61it/s]
33%|ββββ | 31/93 [00:12<00:24, 2.54it/s]
34%|ββββ | 32/93 [00:12<00:24, 2.52it/s]
35%|ββββ | 33/93 [00:13<00:26, 2.31it/s]
37%|ββββ | 34/93 [00:13<00:24, 2.41it/s]
38%|ββββ | 35/93 [00:13<00:23, 2.43it/s]
39%|ββββ | 36/93 [00:14<00:22, 2.58it/s]
40%|ββββ | 37/93 [00:14<00:20, 2.70it/s]
41%|ββββ | 38/93 [00:14<00:21, 2.60it/s]
42%|βββββ | 39/93 [00:15<00:19, 2.80it/s]
43%|βββββ | 40/93 [00:15<00:20, 2.62it/s]
44%|βββββ | 41/93 [00:16<00:20, 2.54it/s]
45%|βββββ | 42/93 [00:16<00:20, 2.44it/s]
46%|βββββ | 43/93 [00:17<00:22, 2.20it/s]
47%|βββββ | 44/93 [00:17<00:20, 2.38it/s]
48%|βββββ | 45/93 [00:17<00:18, 2.55it/s]
49%|βββββ | 46/93 [00:18<00:18, 2.53it/s]
51%|βββββ | 47/93 [00:18<00:18, 2.43it/s]
52%|ββββββ | 48/93 [00:18<00:17, 2.59it/s]
53%|ββββββ | 49/93 [00:19<00:16, 2.74it/s]
54%|ββββββ | 50/93 [00:19<00:17, 2.50it/s]
55%|ββββββ | 51/93 [00:20<00:17, 2.38it/s]
56%|ββββββ | 52/93 [00:20<00:18, 2.23it/s]
57%|ββββββ | 53/93 [00:21<00:20, 1.98it/s]
58%|ββββββ | 54/93 [00:21<00:19, 2.03it/s]
59%|ββββββ | 55/93 [00:22<00:17, 2.17it/s]
60%|ββββββ | 56/93 [00:22<00:16, 2.26it/s]
61%|βββββββ | 57/93 [00:23<00:16, 2.12it/s]
62%|βββββββ | 58/93 [00:23<00:15, 2.28it/s]
63%|βββββββ | 59/93 [00:23<00:14, 2.33it/s]
65%|βββββββ | 60/93 [00:24<00:14, 2.32it/s]
66%|βββββββ | 61/93 [00:24<00:12, 2.48it/s]
67%|βββββββ | 62/93 [00:25<00:13, 2.37it/s]
68%|βββββββ | 63/93 [00:25<00:12, 2.40it/s]
69%|βββββββ | 64/93 [00:27<00:25, 1.13it/s]
70%|βββββββ | 65/93 [00:28<00:21, 1.31it/s]
71%|βββββββ | 66/93 [00:28<00:18, 1.48it/s]
72%|ββββββββ | 67/93 [00:28<00:14, 1.75it/s]
73%|ββββββββ | 68/93 [00:29<00:13, 1.82it/s]
74%|ββββββββ | 69/93 [00:29<00:12, 2.00it/s]
75%|ββββββββ | 70/93 [00:30<00:10, 2.19it/s]
76%|ββββββββ | 71/93 [00:30<00:09, 2.30it/s]
77%|ββββββββ | 72/93 [00:31<00:09, 2.16it/s]
78%|ββββββββ | 73/93 [00:31<00:08, 2.35it/s]
80%|ββββββββ | 74/93 [00:31<00:08, 2.28it/s]
81%|ββββββββ | 75/93 [00:32<00:07, 2.39it/s]
82%|βββββββββ | 76/93 [00:32<00:07, 2.33it/s]
83%|βββββββββ | 77/93 [00:33<00:06, 2.32it/s]
84%|βββββββββ | 78/93 [00:33<00:06, 2.30it/s]
85%|βββββββββ | 79/93 [00:34<00:06, 2.03it/s]
86%|βββββββββ | 80/93 [00:34<00:06, 2.01it/s]
87%|βββββββββ | 81/93 [00:35<00:05, 2.04it/s]
88%|βββββββββ | 82/93 [00:35<00:04, 2.23it/s]
89%|βββββββββ | 83/93 [00:35<00:04, 2.22it/s]
90%|βββββββββ | 84/93 [00:36<00:04, 2.16it/s]
91%|ββββββββββ| 85/93 [00:36<00:03, 2.29it/s]
92%|ββββββββββ| 86/93 [00:37<00:02, 2.35it/s]
94%|ββββββββββ| 87/93 [00:37<00:02, 2.41it/s]
95%|ββββββββββ| 88/93 [00:38<00:02, 2.42it/s]
96%|ββββββββββ| 89/93 [00:38<00:01, 2.36it/s]
97%|ββββββββββ| 90/93 [00:38<00:01, 2.39it/s]
98%|ββββββββββ| 91/93 [00:39<00:00, 2.25it/s]
99%|ββββββββββ| 92/93 [00:39<00:00, 2.28it/s]
100%|ββββββββββ| 93/93 [00:40<00:00, 2.31it/s]
100%|ββββββββββ| 93/93 [00:40<00:00, 2.30it/s]
***** predict_test_ar_SA metrics *****
predict_ex_match_acc = 0.6422
predict_ex_match_acc_stderr = 0.0088
predict_intent_acc = 0.8255
predict_intent_acc_stderr = 0.007
predict_loss = 0.1855
predict_runtime = 0:00:40.74
predict_samples = 2974
predict_samples_per_second = 72.983
predict_slot_micro_f1 = 0.7601
predict_slot_micro_f1_stderr = 0.0034
predict_steps_per_second = 2.282
06/10/2024 22:46:10 - INFO - __main__ - *** test_ko_KR ***
[INFO|trainer.py:718] 2024-06-10 22:46:10,882 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-06-10 22:46:10,885 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-06-10 22:46:10,886 >> Num examples = 2974
[INFO|trainer.py:3204] 2024-06-10 22:46:10,886 >> Batch size = 32
0%| | 0/93 [00:00<?, ?it/s]
2%|β | 2/93 [00:00<00:14, 6.13it/s]
3%|β | 3/93 [00:00<00:21, 4.23it/s]
4%|β | 4/93 [00:01<00:24, 3.56it/s]
5%|β | 5/93 [00:01<00:30, 2.87it/s]
6%|β | 6/93 [00:01<00:29, 2.96it/s]
8%|β | 7/93 [00:02<00:29, 2.87it/s]
9%|β | 8/93 [00:02<00:29, 2.89it/s]
10%|β | 9/93 [00:02<00:29, 2.87it/s]
11%|β | 10/93 [00:03<00:29, 2.80it/s]
12%|ββ | 11/93 [00:03<00:29, 2.75it/s]
13%|ββ | 12/93 [00:03<00:28, 2.80it/s]
14%|ββ | 13/93 [00:04<00:29, 2.74it/s]
15%|ββ | 14/93 [00:04<00:30, 2.58it/s]
16%|ββ | 15/93 [00:05<00:30, 2.60it/s]
17%|ββ | 16/93 [00:05<00:28, 2.66it/s]
18%|ββ | 17/93 [00:06<00:31, 2.45it/s]
19%|ββ | 18/93 [00:06<00:29, 2.56it/s]
20%|ββ | 19/93 [00:06<00:29, 2.53it/s]
22%|βββ | 20/93 [00:07<00:28, 2.59it/s]
23%|βββ | 21/93 [00:07<00:26, 2.71it/s]
24%|βββ | 22/93 [00:07<00:28, 2.45it/s]
25%|βββ | 23/93 [00:08<00:28, 2.43it/s]
26%|βββ | 24/93 [00:08<00:27, 2.52it/s]
27%|βββ | 25/93 [00:09<00:27, 2.50it/s]
28%|βββ | 26/93 [00:09<00:27, 2.46it/s]
29%|βββ | 27/93 [00:09<00:25, 2.60it/s]
30%|βββ | 28/93 [00:10<00:23, 2.73it/s]
31%|βββ | 29/93 [00:10<00:23, 2.76it/s]
32%|ββββ | 30/93 [00:11<00:23, 2.64it/s]
33%|ββββ | 31/93 [00:11<00:28, 2.21it/s]
34%|ββββ | 32/93 [00:11<00:25, 2.42it/s]
35%|ββββ | 33/93 [00:12<00:24, 2.48it/s]
37%|ββββ | 34/93 [00:12<00:22, 2.63it/s]
38%|ββββ | 35/93 [00:13<00:21, 2.68it/s]
39%|ββββ | 36/93 [00:13<00:19, 2.87it/s]
40%|ββββ | 37/93 [00:13<00:18, 2.95it/s]
41%|ββββ | 38/93 [00:13<00:19, 2.87it/s]
42%|βββββ | 39/93 [00:14<00:17, 3.02it/s]
43%|βββββ | 40/93 [00:14<00:17, 2.96it/s]
44%|βββββ | 41/93 [00:14<00:17, 2.99it/s]
45%|βββββ | 42/93 [00:15<00:18, 2.69it/s]
46%|βββββ | 43/93 [00:15<00:19, 2.58it/s]
47%|βββββ | 44/93 [00:16<00:19, 2.55it/s]
48%|βββββ | 45/93 [00:16<00:17, 2.71it/s]
49%|βββββ | 46/93 [00:16<00:16, 2.80it/s]
51%|βββββ | 47/93 [00:17<00:17, 2.63it/s]
52%|ββββββ | 48/93 [00:17<00:16, 2.75it/s]
53%|ββββββ | 49/93 [00:17<00:15, 2.91it/s]
54%|ββββββ | 50/93 [00:18<00:15, 2.85it/s]
55%|ββββββ | 51/93 [00:18<00:15, 2.79it/s]
56%|ββββββ | 52/93 [00:19<00:15, 2.65it/s]
57%|ββββββ | 53/93 [00:19<00:15, 2.60it/s]
58%|ββββββ | 54/93 [00:19<00:14, 2.62it/s]
59%|ββββββ | 55/93 [00:20<00:13, 2.73it/s]
60%|ββββββ | 56/93 [00:20<00:13, 2.83it/s]
61%|βββββββ | 57/93 [00:20<00:12, 2.92it/s]
62%|βββββββ | 58/93 [00:21<00:11, 2.94it/s]
63%|βββββββ | 59/93 [00:21<00:11, 3.00it/s]
65%|βββββββ | 60/93 [00:21<00:10, 3.05it/s]
66%|βββββββ | 61/93 [00:22<00:10, 3.09it/s]
67%|βββββββ | 62/93 [00:22<00:10, 2.82it/s]
68%|βββββββ | 63/93 [00:22<00:10, 2.87it/s]
69%|βββββββ | 64/93 [00:23<00:12, 2.36it/s]
70%|βββββββ | 65/93 [00:23<00:11, 2.51it/s]
71%|βββββββ | 66/93 [00:24<00:11, 2.42it/s]
72%|ββββββββ | 67/93 [00:24<00:10, 2.47it/s]
73%|ββββββββ | 68/93 [00:25<00:10, 2.48it/s]
74%|ββββββββ | 69/93 [00:25<00:09, 2.47it/s]
75%|ββββββββ | 70/93 [00:25<00:09, 2.49it/s]
76%|ββββββββ | 71/93 [00:26<00:08, 2.67it/s]
77%|ββββββββ | 72/93 [00:26<00:08, 2.55it/s]
78%|ββββββββ | 73/93 [00:26<00:07, 2.74it/s]
80%|ββββββββ | 74/93 [00:27<00:07, 2.57it/s]
81%|ββββββββ | 75/93 [00:27<00:06, 2.79it/s]
82%|βββββββββ | 76/93 [00:28<00:06, 2.55it/s]
83%|βββββββββ | 77/93 [00:28<00:06, 2.66it/s]
84%|βββββββββ | 78/93 [00:28<00:05, 2.70it/s]
85%|βββββββββ | 79/93 [00:29<00:06, 2.27it/s]
86%|βββββββββ | 80/93 [00:29<00:05, 2.20it/s]
87%|βββββββββ | 81/93 [00:30<00:05, 2.32it/s]
88%|βββββββββ | 82/93 [00:30<00:04, 2.46it/s]
89%|βββββββββ | 83/93 [00:31<00:03, 2.52it/s]
90%|βββββββββ | 84/93 [00:31<00:03, 2.34it/s]
91%|ββββββββββ| 85/93 [00:31<00:03, 2.46it/s]
92%|ββββββββββ| 86/93 [00:32<00:02, 2.60it/s]
94%|ββββββββββ| 87/93 [00:32<00:02, 2.67it/s]
95%|ββββββββββ| 88/93 [00:32<00:01, 2.74it/s]
96%|ββββββββββ| 89/93 [00:33<00:01, 2.65it/s]
97%|ββββββββββ| 90/93 [00:33<00:01, 2.62it/s]
98%|ββββββββββ| 91/93 [00:34<00:00, 2.39it/s]
99%|ββββββββββ| 92/93 [00:34<00:00, 2.37it/s]
100%|ββββββββββ| 93/93 [00:34<00:00, 2.50it/s]
100%|ββββββββββ| 93/93 [00:35<00:00, 2.64it/s]
***** predict_test_ko_KR metrics *****
predict_ex_match_acc = 0.6967
predict_ex_match_acc_stderr = 0.0084
predict_intent_acc = 0.8642
predict_intent_acc_stderr = 0.0063
predict_loss = 0.1606
predict_runtime = 0:00:35.57
predict_samples = 2974
predict_samples_per_second = 83.608
predict_slot_micro_f1 = 0.8051
predict_slot_micro_f1_stderr = 0.0033
predict_steps_per_second = 2.614
|