File size: 99,846 Bytes
8048f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the --report_to flag to control the integrations used for logging result (for instance --report_to none).
02/05/2024 22:54:59 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: False, 16-bits training: False
02/05/2024 22:54:59 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=2,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=True,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=input_length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/cascaded_SLU/runs/Feb05_22-54-59_chasma-02,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=3.0,
optim=adamw_torch,
optim_args=None,
output_dir=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/cascaded_SLU,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=32,
per_device_train_batch_size=8,
predict_with_generate=True,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/cascaded_SLU,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=steps,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
Loading Dataset Infos from /beegfs/scratch/user/blee/hugging-face/models/modules/datasets_modules/datasets/speech_massive_cascaded/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
02/05/2024 22:54:59 - INFO - datasets.info - Loading Dataset Infos from /beegfs/scratch/user/blee/hugging-face/models/modules/datasets_modules/datasets/speech_massive_cascaded/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
Overwrite dataset info from restored data version if exists.
02/05/2024 22:54:59 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
02/05/2024 22:54:59 - INFO - datasets.info - Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
Found cached dataset speech_massive_cascaded (/beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293)
02/05/2024 22:54:59 - INFO - datasets.builder - Found cached dataset speech_massive_cascaded (/beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293)
Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
02/05/2024 22:54:59 - INFO - datasets.info - Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
[INFO|configuration_utils.py:737] 2024-02-05 22:54:59,933 >> loading configuration file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/config.json
[INFO|configuration_utils.py:802] 2024-02-05 22:54:59,942 >> Model config MT5Config {
  "_name_or_path": "/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407",
  "architectures": [
    "MT5ForConditionalGeneration"
  ],
  "classifier_dropout": 0.0,
  "d_ff": 2048,
  "d_kv": 64,
  "d_model": 768,
  "decoder_start_token_id": 0,
  "dense_act_fn": "gelu_new",
  "dropout": 0.2,
  "dropout_rate": 0.1,
  "eos_token_id": 1,
  "feed_forward_proj": "gated-gelu",
  "initializer_factor": 1.0,
  "is_encoder_decoder": true,
  "is_gated_act": true,
  "layer_norm_epsilon": 1e-06,
  "model_type": "mt5",
  "num_decoder_layers": 12,
  "num_heads": 12,
  "num_layers": 12,
  "output_past": true,
  "pad_token_id": 0,
  "relative_attention_max_distance": 128,
  "relative_attention_num_buckets": 32,
  "tie_word_embeddings": false,
  "tokenizer_class": "T5Tokenizer",
  "torch_dtype": "float32",
  "transformers_version": "4.37.0.dev0",
  "use_cache": true,
  "vocab_size": 250112
}

[INFO|tokenization_utils_base.py:2024] 2024-02-05 22:54:59,944 >> loading file spiece.model
[INFO|tokenization_utils_base.py:2024] 2024-02-05 22:54:59,945 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:2024] 2024-02-05 22:54:59,945 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2024] 2024-02-05 22:54:59,945 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2024] 2024-02-05 22:54:59,945 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:3373] 2024-02-05 22:55:00,407 >> loading weights file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/model.safetensors
[INFO|configuration_utils.py:826] 2024-02-05 22:55:00,566 >> Generate config GenerationConfig {
  "decoder_start_token_id": 0,
  "eos_token_id": 1,
  "pad_token_id": 0
}

[INFO|modeling_utils.py:4224] 2024-02-05 22:55:05,619 >> All model checkpoint weights were used when initializing MT5ForConditionalGeneration.

[INFO|modeling_utils.py:4232] 2024-02-05 22:55:05,620 >> All the weights of MT5ForConditionalGeneration were initialized from the model checkpoint at /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407.
If your task is similar to the task the model of the checkpoint was trained on, you can already use MT5ForConditionalGeneration for predictions without further training.
[INFO|configuration_utils.py:779] 2024-02-05 22:55:05,627 >> loading configuration file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/generation_config.json
[INFO|configuration_utils.py:826] 2024-02-05 22:55:05,628 >> Generate config GenerationConfig {
  "decoder_start_token_id": 0,
  "eos_token_id": 1,
  "pad_token_id": 0
}


Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-a28263cfb71413f6.arrow
02/05/2024 22:55:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-a28263cfb71413f6.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 9722.44 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 9509.58 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-0f6b9ba1cc4e5fb1.arrow
02/05/2024 22:55:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-0f6b9ba1cc4e5fb1.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 19076.56 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 18274.25 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-cd10216b4341f1a2.arrow
02/05/2024 22:55:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-cd10216b4341f1a2.arrow

Running tokenizer on prediction dataset:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 2000/2974 [00:00<00:00, 17978.35 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 17438.54 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-cf09cb968cef4c56.arrow
02/05/2024 22:55:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-cf09cb968cef4c56.arrow

Running tokenizer on prediction dataset:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 2000/2974 [00:00<00:00, 17167.19 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 16973.43 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-b372c4d6e9ad447f.arrow
02/05/2024 22:55:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-b372c4d6e9ad447f.arrow

Running tokenizer on prediction dataset:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 2000/2974 [00:00<00:00, 18156.53 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 9564.04 examples/s] 

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-5e85733ab0d7983c.arrow
02/05/2024 22:55:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-5e85733ab0d7983c.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 21103.51 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 20206.18 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-3498127f38d0e88c.arrow
02/05/2024 22:55:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-3498127f38d0e88c.arrow

Running tokenizer on prediction dataset:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 2000/2974 [00:00<00:00, 17313.98 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 17062.70 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-5031b1ae09c119f0.arrow
02/05/2024 22:55:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-5031b1ae09c119f0.arrow

Running tokenizer on prediction dataset:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 2000/2974 [00:00<00:00, 18263.66 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 17891.90 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-afad46b8cc76fbde.arrow
02/05/2024 22:55:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-afad46b8cc76fbde.arrow

Running tokenizer on prediction dataset:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 2000/2974 [00:00<00:00, 17239.79 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 16795.72 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-44bbdcb1f95b0505.arrow
02/05/2024 22:55:08 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-44bbdcb1f95b0505.arrow

Running tokenizer on prediction dataset:  34%|β–ˆβ–ˆβ–ˆβ–Ž      | 1000/2974 [00:00<00:00, 4587.00 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 10501.79 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 9148.27 examples/s] 

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-649defd19aa00c44.arrow
02/05/2024 22:55:08 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-649defd19aa00c44.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 20318.81 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 19383.07 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-bc58b34f0f2e6d55.arrow
02/05/2024 22:55:08 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-bc58b34f0f2e6d55.arrow

Running tokenizer on prediction dataset:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 2000/2974 [00:00<00:00, 17147.99 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 16740.65 examples/s]
02/05/2024 22:55:21 - WARNING - accelerate.utils.other - Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
02/05/2024 22:55:21 - INFO - __main__ - *** Predict ***
02/05/2024 22:55:21 - INFO - __main__ - *** test_ar_SA ***
[INFO|trainer.py:718] 2024-02-05 22:55:21,494 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 22:55:21,504 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 22:55:21,504 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 22:55:21,505 >>   Batch size = 32
[WARNING|logging.py:314] 2024-02-05 22:55:21,509 >> You're using a T5TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:17,  5.15it/s]
  3%|β–Ž         | 3/93 [00:00<00:23,  3.82it/s]
  4%|▍         | 4/93 [00:01<00:29,  2.97it/s]
  5%|β–Œ         | 5/93 [00:01<00:34,  2.52it/s]
  6%|β–‹         | 6/93 [00:02<00:33,  2.62it/s]
  8%|β–Š         | 7/93 [00:02<00:35,  2.45it/s]
  9%|β–Š         | 8/93 [00:02<00:33,  2.57it/s]
 10%|β–‰         | 9/93 [00:03<00:33,  2.53it/s]
 11%|β–ˆ         | 10/93 [00:03<00:32,  2.58it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:32,  2.50it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:31,  2.58it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:30,  2.62it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:30,  2.55it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:32,  2.38it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:34,  2.20it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:34,  2.19it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:32,  2.27it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:30,  2.41it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:29,  2.46it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:28,  2.51it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:30,  2.34it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:29,  2.36it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:30,  2.28it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:29,  2.31it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:29,  2.24it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:29,  2.25it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:12<01:00,  1.08it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:49,  1.29it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:13<00:41,  1.53it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:36,  1.68it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:33,  1.82it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:30,  1.95it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:28,  2.09it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:15<00:25,  2.31it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:24,  2.36it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:16<00:24,  2.30it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:17<00:25,  2.16it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:17<00:24,  2.18it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:18<00:23,  2.30it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:22,  2.35it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:18<00:21,  2.40it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:19,  2.54it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:19<00:18,  2.69it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:19<00:18,  2.60it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:20<00:18,  2.47it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:20<00:19,  2.34it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:20,  2.23it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:21<00:18,  2.35it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:18,  2.37it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:22<00:20,  2.06it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:23<00:18,  2.16it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:23<00:17,  2.29it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:24<00:17,  2.26it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:24<00:16,  2.24it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:24<00:15,  2.34it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:25<00:15,  2.40it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:25<00:14,  2.41it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:26<00:13,  2.53it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:12,  2.66it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:26<00:13,  2.44it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:12,  2.51it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:27<00:11,  2.66it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:27<00:10,  2.69it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:10,  2.66it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:28<00:10,  2.62it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:09,  2.63it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:29<00:09,  2.53it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:29<00:09,  2.41it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:30<00:09,  2.42it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:30<00:09,  2.27it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:31<00:09,  2.25it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:31<00:08,  2.37it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:32<00:08,  2.36it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:32<00:07,  2.38it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:32<00:06,  2.48it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:33<00:06,  2.60it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:33<00:05,  2.64it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:34<00:05,  2.49it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:34<00:05,  2.41it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:34<00:05,  2.38it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:35<00:04,  2.53it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:35<00:03,  2.58it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:36<00:03,  2.61it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:36<00:03,  2.34it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:37<00:03,  2.20it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:37<00:02,  2.31it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:37<00:02,  2.46it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:38<00:01,  2.43it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:38<00:01,  2.35it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:39<00:00,  2.15it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:39<00:00,  2.12it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.29it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.31it/s]
***** predict_test_ar_SA metrics *****
  predict_ex_match_acc         =     0.4526
  predict_ex_match_acc_stderr  =     0.0091
  predict_intent_acc           =     0.7135
  predict_intent_acc_stderr    =     0.0083
  predict_loss                 =     0.5892
  predict_runtime              = 0:00:41.35
  predict_samples              =       2974
  predict_samples_per_second   =     71.922
  predict_slot_micro_f1        =     0.6007
  predict_slot_micro_f1_stderr =     0.0039
  predict_steps_per_second     =      2.249
02/05/2024 22:56:03 - INFO - __main__ - *** test_de_DE ***
[INFO|trainer.py:718] 2024-02-05 22:56:03,080 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 22:56:03,083 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 22:56:03,083 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 22:56:03,083 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:18,  4.99it/s]
  3%|β–Ž         | 3/93 [00:00<00:23,  3.85it/s]
  4%|▍         | 4/93 [00:01<00:29,  3.05it/s]
  5%|β–Œ         | 5/93 [00:01<00:30,  2.92it/s]
  6%|β–‹         | 6/93 [00:01<00:29,  2.93it/s]
  8%|β–Š         | 7/93 [00:02<00:32,  2.69it/s]
  9%|β–Š         | 8/93 [00:02<00:31,  2.70it/s]
 10%|β–‰         | 9/93 [00:03<00:32,  2.57it/s]
 11%|β–ˆ         | 10/93 [00:03<00:29,  2.78it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:30,  2.72it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:31,  2.58it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:29,  2.67it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:04<00:29,  2.65it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:33,  2.34it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:35,  2.19it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:34,  2.17it/s]
 19%|β–ˆβ–‰        | 18/93 [00:06<00:33,  2.24it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:32,  2.24it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:31,  2.29it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:30,  2.34it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:34,  2.08it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:34,  2.03it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:32,  2.14it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:30,  2.20it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:29,  2.25it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:28,  2.33it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:13<00:59,  1.09it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:48,  1.33it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:13<00:42,  1.50it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:35,  1.74it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:32,  1.85it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:33,  1.82it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:29,  2.00it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:16<00:29,  1.97it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:27,  2.10it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:16<00:25,  2.17it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:17<00:24,  2.23it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:17<00:25,  2.13it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:18<00:23,  2.25it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:22,  2.36it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:19<00:21,  2.38it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:20,  2.39it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:19<00:19,  2.49it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:20<00:19,  2.42it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:20<00:18,  2.52it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:21<00:17,  2.62it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:17,  2.55it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:21<00:17,  2.53it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:18,  2.30it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:22<00:18,  2.26it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:23<00:20,  2.00it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:23<00:18,  2.12it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:24<00:17,  2.24it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:24<00:16,  2.36it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:24<00:14,  2.50it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:25<00:14,  2.42it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:25<00:15,  2.30it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:26<00:14,  2.36it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:13,  2.42it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:27<00:14,  2.23it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:13,  2.24it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:28<00:13,  2.30it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:28<00:13,  2.19it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:11,  2.38it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:29<00:11,  2.44it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:10,  2.44it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:30<00:10,  2.42it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:30<00:10,  2.23it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:31<00:10,  2.17it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:31<00:10,  2.10it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:32<00:10,  2.01it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:32<00:09,  2.11it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:33<00:08,  2.13it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:33<00:08,  2.01it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:34<00:08,  2.04it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:34<00:07,  2.14it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:35<00:07,  2.12it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:35<00:06,  2.17it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:35<00:05,  2.18it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:36<00:05,  2.25it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:36<00:04,  2.28it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:37<00:04,  2.34it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:37<00:03,  2.36it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:37<00:03,  2.41it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:38<00:02,  2.41it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:38<00:02,  2.41it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:39<00:02,  2.49it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:39<00:01,  2.45it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:39<00:01,  2.50it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:40<00:00,  2.22it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:40<00:00,  2.34it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.44it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.24it/s]
***** predict_test_de_DE metrics *****
  predict_ex_match_acc         =     0.6019
  predict_ex_match_acc_stderr  =      0.009
  predict_intent_acc           =     0.8507
  predict_intent_acc_stderr    =     0.0065
  predict_loss                 =     0.4208
  predict_runtime              = 0:00:41.93
  predict_samples              =       2974
  predict_samples_per_second   =     70.912
  predict_slot_micro_f1        =     0.7291
  predict_slot_micro_f1_stderr =     0.0032
  predict_steps_per_second     =      2.217
02/05/2024 22:56:45 - INFO - __main__ - *** test_es_ES ***
[INFO|trainer.py:718] 2024-02-05 22:56:45,260 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 22:56:45,263 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 22:56:45,263 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 22:56:45,263 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:19,  4.73it/s]
  3%|β–Ž         | 3/93 [00:00<00:27,  3.21it/s]
  4%|▍         | 4/93 [00:01<00:35,  2.53it/s]
  5%|β–Œ         | 5/93 [00:01<00:37,  2.35it/s]
  6%|β–‹         | 6/93 [00:02<00:36,  2.36it/s]
  8%|β–Š         | 7/93 [00:02<00:37,  2.32it/s]
  9%|β–Š         | 8/93 [00:03<00:35,  2.41it/s]
 10%|β–‰         | 9/93 [00:03<00:34,  2.40it/s]
 11%|β–ˆ         | 10/93 [00:03<00:34,  2.42it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:35,  2.32it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:36,  2.19it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:36,  2.22it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:35,  2.24it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:37,  2.07it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:38,  1.98it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:36,  2.05it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:35,  2.14it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:34,  2.13it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:32,  2.21it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:31,  2.26it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:09<00:37,  1.91it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:10<00:37,  1.88it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:10<00:35,  1.95it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:11<00:33,  2.05it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:11<00:32,  2.09it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:12<00:31,  2.11it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:14<01:02,  1.05it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:14<00:52,  1.22it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:15<00:45,  1.39it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:15<00:38,  1.61it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:16<00:37,  1.65it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:16<00:38,  1.55it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:17<00:34,  1.72it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:17<00:31,  1.82it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:18<00:30,  1.89it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:19<00:31,  1.77it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:19<00:31,  1.76it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:20<00:29,  1.85it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:20<00:26,  1.97it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:20<00:25,  2.01it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:21<00:25,  2.04it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:21<00:23,  2.17it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:22<00:21,  2.29it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:22<00:21,  2.20it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:23<00:23,  2.01it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:23<00:21,  2.18it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:24<00:24,  1.87it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:24<00:21,  2.03it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:25<00:21,  2.04it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:25<00:19,  2.13it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:26<00:22,  1.84it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:26<00:20,  1.99it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:27<00:19,  2.05it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:27<00:17,  2.15it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:28<00:17,  2.16it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:28<00:17,  2.00it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:29<00:16,  2.07it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:29<00:17,  1.94it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:30<00:15,  2.13it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:30<00:15,  2.09it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:31<00:15,  2.01it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:31<00:13,  2.18it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:32<00:14,  2.04it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:32<00:12,  2.16it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:32<00:11,  2.27it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:33<00:13,  1.90it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:34<00:13,  1.86it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:34<00:13,  1.84it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:35<00:12,  1.88it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:35<00:12,  1.80it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:36<00:11,  1.83it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:36<00:10,  1.98it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:37<00:09,  1.97it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:37<00:09,  1.92it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:38<00:09,  1.83it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:39<00:08,  1.81it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:40<00:14,  1.02it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:41<00:11,  1.23it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:41<00:09,  1.36it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:42<00:07,  1.53it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:42<00:06,  1.69it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:43<00:05,  1.84it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:43<00:04,  1.92it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:44<00:04,  1.93it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:44<00:03,  1.93it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:45<00:02,  2.02it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:45<00:02,  2.19it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:46<00:01,  2.07it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:46<00:01,  2.16it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:47<00:00,  2.04it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:47<00:00,  2.02it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:47<00:00,  2.21it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:48<00:00,  1.92it/s]
***** predict_test_es_ES metrics *****
  predict_ex_match_acc         =     0.6231
  predict_ex_match_acc_stderr  =     0.0089
  predict_intent_acc           =     0.8591
  predict_intent_acc_stderr    =     0.0064
  predict_loss                 =     0.2681
  predict_runtime              = 0:00:48.92
  predict_samples              =       2974
  predict_samples_per_second   =     60.782
  predict_slot_micro_f1        =     0.7314
  predict_slot_micro_f1_stderr =      0.003
  predict_steps_per_second     =      1.901
02/05/2024 22:57:34 - INFO - __main__ - *** test_fr_FR ***
[INFO|trainer.py:718] 2024-02-05 22:57:34,438 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 22:57:34,440 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 22:57:34,441 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 22:57:34,441 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:19,  4.68it/s]
  3%|β–Ž         | 3/93 [00:00<00:28,  3.12it/s]
  4%|▍         | 4/93 [00:01<00:35,  2.54it/s]
  5%|β–Œ         | 5/93 [00:01<00:39,  2.24it/s]
  6%|β–‹         | 6/93 [00:02<00:39,  2.23it/s]
  8%|β–Š         | 7/93 [00:02<00:39,  2.16it/s]
  9%|β–Š         | 8/93 [00:03<00:38,  2.21it/s]
 10%|β–‰         | 9/93 [00:03<00:37,  2.26it/s]
 11%|β–ˆ         | 10/93 [00:04<00:35,  2.31it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:38,  2.16it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:05<00:37,  2.14it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:38,  2.10it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:06<00:39,  1.99it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:40,  1.90it/s]
 17%|β–ˆβ–‹        | 16/93 [00:07<00:41,  1.86it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:42,  1.80it/s]
 19%|β–ˆβ–‰        | 18/93 [00:08<00:39,  1.92it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:37,  2.00it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:09<00:36,  2.00it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:35,  2.03it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:10<00:35,  2.02it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:10<00:36,  1.93it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:11<00:36,  1.87it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:12<00:36,  1.89it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:12<00:33,  1.98it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:12<00:32,  2.00it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:15<01:03,  1.02it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:15<00:52,  1.22it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:15<00:45,  1.39it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:16<00:38,  1.60it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:16<00:35,  1.69it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:17<00:34,  1.76it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:17<00:30,  1.93it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:18<00:31,  1.83it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:18<00:30,  1.87it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:19<00:29,  1.88it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:20<00:29,  1.84it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:20<00:29,  1.86it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:21<00:27,  1.90it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:21<00:26,  1.93it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:22<00:25,  1.99it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:22<00:25,  1.97it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:22<00:23,  2.08it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:23<00:23,  2.08it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:23<00:21,  2.14it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:24<00:22,  2.02it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:25<00:24,  1.84it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:25<00:23,  1.84it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:26<00:23,  1.86it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:26<00:21,  1.94it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:27<00:24,  1.67it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:27<00:21,  1.84it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:28<00:20,  1.95it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:28<00:19,  1.97it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:29<00:18,  1.99it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:29<00:17,  2.03it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:30<00:17,  2.01it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:30<00:16,  2.06it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:31<00:15,  2.15it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:31<00:16,  2.00it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:32<00:15,  1.99it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:32<00:14,  2.13it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:32<00:13,  2.23it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:33<00:12,  2.29it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:33<00:11,  2.31it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:34<00:11,  2.26it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:34<00:12,  2.03it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:35<00:12,  1.97it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:35<00:11,  1.92it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:37<00:21,  1.04it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:38<00:17,  1.20it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:38<00:14,  1.41it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:39<00:12,  1.55it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:40<00:11,  1.60it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:40<00:10,  1.64it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:41<00:09,  1.71it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:41<00:08,  1.67it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:42<00:07,  1.80it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:42<00:07,  1.84it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:43<00:06,  1.93it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:43<00:05,  2.02it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:44<00:04,  2.09it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:44<00:04,  2.14it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:44<00:03,  2.08it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:45<00:03,  2.11it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:45<00:02,  2.16it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:46<00:02,  2.22it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:46<00:01,  2.21it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:47<00:01,  2.21it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:47<00:00,  2.01it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:48<00:00,  1.96it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:48<00:00,  2.14it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:49<00:00,  1.90it/s]
***** predict_test_fr_FR metrics *****
  predict_ex_match_acc         =      0.466
  predict_ex_match_acc_stderr  =     0.0091
  predict_intent_acc           =      0.847
  predict_intent_acc_stderr    =     0.0066
  predict_loss                 =     0.6841
  predict_runtime              = 0:00:49.51
  predict_samples              =       2974
  predict_samples_per_second   =     60.061
  predict_slot_micro_f1        =     0.5181
  predict_slot_micro_f1_stderr =     0.0034
  predict_steps_per_second     =      1.878
02/05/2024 22:58:24 - INFO - __main__ - *** test_hu_HU ***
[INFO|trainer.py:718] 2024-02-05 22:58:24,215 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 22:58:24,218 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 22:58:24,219 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 22:58:24,219 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:15,  5.83it/s]
  3%|β–Ž         | 3/93 [00:00<00:20,  4.32it/s]
  4%|▍         | 4/93 [00:01<00:30,  2.89it/s]
  5%|β–Œ         | 5/93 [00:01<00:30,  2.84it/s]
  6%|β–‹         | 6/93 [00:01<00:29,  2.92it/s]
  8%|β–Š         | 7/93 [00:02<00:31,  2.74it/s]
  9%|β–Š         | 8/93 [00:02<00:29,  2.84it/s]
 10%|β–‰         | 9/93 [00:02<00:30,  2.78it/s]
 11%|β–ˆ         | 10/93 [00:03<00:30,  2.70it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:30,  2.73it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:30,  2.63it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:29,  2.69it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:04<00:30,  2.59it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:31,  2.49it/s]
 17%|β–ˆβ–‹        | 16/93 [00:05<00:32,  2.37it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:31,  2.40it/s]
 19%|β–ˆβ–‰        | 18/93 [00:06<00:31,  2.40it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:29,  2.51it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:28,  2.60it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:07<00:27,  2.61it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:32,  2.21it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:08<00:30,  2.27it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:30,  2.28it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:09<00:31,  2.17it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:29,  2.31it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:26,  2.48it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:12<00:59,  1.10it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:12<00:48,  1.32it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:13<00:43,  1.46it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:13<00:35,  1.73it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:34,  1.75it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:14<00:33,  1.77it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:30,  1.97it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:15<00:27,  2.12it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:25,  2.23it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:16<00:24,  2.29it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:16<00:23,  2.32it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:17<00:23,  2.26it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:17<00:22,  2.37it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:22,  2.28it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:18<00:21,  2.32it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:18<00:20,  2.43it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:19<00:20,  2.33it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:19<00:20,  2.37it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:20<00:19,  2.36it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:20<00:18,  2.53it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:18,  2.49it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:21<00:17,  2.57it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:21<00:16,  2.59it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:22<00:16,  2.61it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:22<00:16,  2.44it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:23<00:17,  2.32it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:23<00:15,  2.44it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:23<00:14,  2.57it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:24<00:14,  2.51it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:24<00:14,  2.47it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:24<00:13,  2.55it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:25<00:13,  2.51it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:25<00:12,  2.60it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:26<00:13,  2.33it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:26<00:13,  2.27it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:27<00:12,  2.43it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:27<00:12,  2.41it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:27<00:11,  2.40it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:28<00:11,  2.45it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:28<00:10,  2.45it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:29<00:10,  2.41it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:29<00:10,  2.27it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:30<00:10,  2.23it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:30<00:10,  2.04it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:31<00:09,  2.23it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:31<00:08,  2.38it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:31<00:08,  2.36it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:32<00:07,  2.30it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:32<00:07,  2.27it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:33<00:07,  2.28it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:33<00:06,  2.22it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:34<00:06,  2.13it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:34<00:06,  2.11it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:35<00:05,  2.21it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:35<00:05,  2.18it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:35<00:04,  2.20it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:36<00:03,  2.28it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:36<00:03,  2.31it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:37<00:03,  2.04it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:37<00:02,  2.13it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:38<00:02,  2.30it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:38<00:01,  2.19it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:39<00:01,  2.24it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:39<00:00,  2.10it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:40<00:00,  1.99it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.21it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.28it/s]
***** predict_test_hu_HU metrics *****
  predict_ex_match_acc         =      0.534
  predict_ex_match_acc_stderr  =     0.0091
  predict_intent_acc           =     0.8184
  predict_intent_acc_stderr    =     0.0071
  predict_loss                 =     0.5463
  predict_runtime              = 0:00:41.23
  predict_samples              =       2974
  predict_samples_per_second   =     72.121
  predict_slot_micro_f1        =     0.6581
  predict_slot_micro_f1_stderr =     0.0036
  predict_steps_per_second     =      2.255
02/05/2024 22:59:05 - INFO - __main__ - *** test_ko_KR ***
[INFO|trainer.py:718] 2024-02-05 22:59:05,706 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 22:59:05,709 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 22:59:05,709 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 22:59:05,710 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:14,  6.10it/s]
  3%|β–Ž         | 3/93 [00:00<00:20,  4.45it/s]
  4%|▍         | 4/93 [00:00<00:24,  3.69it/s]
  5%|β–Œ         | 5/93 [00:01<00:25,  3.49it/s]
  6%|β–‹         | 6/93 [00:01<00:25,  3.40it/s]
  8%|β–Š         | 7/93 [00:01<00:27,  3.15it/s]
  9%|β–Š         | 8/93 [00:02<00:26,  3.20it/s]
 10%|β–‰         | 9/93 [00:02<00:28,  2.93it/s]
 11%|β–ˆ         | 10/93 [00:03<00:29,  2.81it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:29,  2.75it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:34,  2.37it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:33,  2.41it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:04<00:31,  2.55it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:32,  2.37it/s]
 17%|β–ˆβ–‹        | 16/93 [00:05<00:30,  2.53it/s]
 18%|β–ˆβ–Š        | 17/93 [00:05<00:29,  2.56it/s]
 19%|β–ˆβ–‰        | 18/93 [00:06<00:29,  2.57it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:06<00:27,  2.70it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:06<00:25,  2.82it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:07<00:24,  2.89it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:07<00:24,  2.85it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:08<00:25,  2.78it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:08<00:24,  2.78it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:08<00:26,  2.55it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:09<00:24,  2.72it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:09<00:23,  2.81it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:11<00:56,  1.16it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:11<00:45,  1.42it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:12<00:38,  1.65it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:12<00:31,  1.96it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:12<00:29,  2.09it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:13<00:26,  2.24it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:13<00:23,  2.53it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:14<00:24,  2.41it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:14<00:22,  2.56it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:14<00:22,  2.52it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:15<00:22,  2.49it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:15<00:22,  2.42it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:15<00:20,  2.61it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:16<00:19,  2.69it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:16<00:18,  2.78it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:16<00:17,  2.85it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:17<00:18,  2.69it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:17<00:18,  2.65it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:18<00:16,  2.84it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:18<00:15,  2.88it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:18<00:15,  2.83it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:19<00:14,  2.94it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:19<00:15,  2.78it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:19<00:15,  2.78it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:20<00:15,  2.67it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:20<00:15,  2.62it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:21<00:14,  2.72it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:21<00:13,  2.79it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:21<00:13,  2.79it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:22<00:12,  2.81it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:22<00:12,  2.88it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:22<00:11,  2.84it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:23<00:11,  2.80it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:23<00:11,  2.73it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:23<00:11,  2.75it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:24<00:10,  2.92it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:24<00:09,  3.00it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:24<00:09,  3.10it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:25<00:08,  3.08it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:25<00:08,  3.04it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:25<00:08,  2.90it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:26<00:08,  2.86it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:26<00:08,  2.76it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:27<00:08,  2.49it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:27<00:07,  2.69it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:27<00:07,  2.82it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:28<00:06,  2.78it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:28<00:06,  2.66it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:28<00:06,  2.73it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:29<00:05,  2.78it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:29<00:06,  2.25it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:30<00:05,  2.39it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:30<00:05,  2.43it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:30<00:04,  2.56it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:31<00:04,  2.67it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:31<00:03,  2.81it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:31<00:03,  2.91it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:32<00:02,  2.83it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:32<00:02,  2.67it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:32<00:02,  2.78it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:33<00:01,  2.85it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:33<00:01,  2.83it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:34<00:01,  2.84it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:34<00:00,  2.62it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:34<00:00,  2.54it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:35<00:00,  2.78it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:35<00:00,  2.63it/s]
***** predict_test_ko_KR metrics *****
  predict_ex_match_acc         =     0.5562
  predict_ex_match_acc_stderr  =     0.0091
  predict_intent_acc           =     0.8305
  predict_intent_acc_stderr    =     0.0069
  predict_loss                 =     0.8564
  predict_runtime              = 0:00:35.72
  predict_samples              =       2974
  predict_samples_per_second   =     83.241
  predict_slot_micro_f1        =      0.654
  predict_slot_micro_f1_stderr =      0.004
  predict_steps_per_second     =      2.603
02/05/2024 22:59:41 - INFO - __main__ - *** test_nl_NL ***
[INFO|trainer.py:718] 2024-02-05 22:59:41,670 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 22:59:41,672 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 22:59:41,673 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 22:59:41,673 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:19,  4.57it/s]
  3%|β–Ž         | 3/93 [00:00<00:31,  2.84it/s]
  4%|▍         | 4/93 [00:01<00:33,  2.67it/s]
  5%|β–Œ         | 5/93 [00:01<00:33,  2.60it/s]
  6%|β–‹         | 6/93 [00:02<00:33,  2.56it/s]
  8%|β–Š         | 7/93 [00:02<00:35,  2.41it/s]
  9%|β–Š         | 8/93 [00:03<00:35,  2.41it/s]
 10%|β–‰         | 9/93 [00:03<00:35,  2.34it/s]
 11%|β–ˆ         | 10/93 [00:04<00:38,  2.17it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:38,  2.10it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:05<00:38,  2.10it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:37,  2.14it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:35,  2.21it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:39,  1.98it/s]
 17%|β–ˆβ–‹        | 16/93 [00:07<00:40,  1.91it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:40,  1.88it/s]
 19%|β–ˆβ–‰        | 18/93 [00:08<00:37,  1.98it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:35,  2.06it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:34,  2.11it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:32,  2.20it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:10<00:36,  1.97it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:10<00:34,  2.04it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:10<00:34,  2.01it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:11<00:33,  2.05it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:11<00:31,  2.11it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:12<00:30,  2.19it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:14<01:01,  1.06it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:14<00:50,  1.26it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:15<00:43,  1.44it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:15<00:38,  1.63it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:16<00:35,  1.73it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:16<00:35,  1.70it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:17<00:31,  1.89it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:17<00:30,  1.92it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:18<00:28,  2.03it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:18<00:26,  2.08it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:19<00:30,  1.79it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:19<00:30,  1.79it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:20<00:27,  1.94it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:20<00:24,  2.11it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:21<00:23,  2.18it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:21<00:21,  2.31it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:21<00:20,  2.36it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:22<00:20,  2.36it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:22<00:19,  2.35it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:23<00:18,  2.44it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:23<00:18,  2.41it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:23<00:18,  2.41it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:24<00:17,  2.44it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:24<00:19,  2.21it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:25<00:19,  2.12it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:25<00:19,  2.09it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:26<00:17,  2.17it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:26<00:16,  2.37it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:27<00:15,  2.42it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:27<00:15,  2.37it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:27<00:15,  2.29it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:28<00:14,  2.30it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:28<00:14,  2.35it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:29<00:14,  2.16it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:29<00:14,  2.15it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:30<00:13,  2.28it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:30<00:13,  2.16it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:31<00:12,  2.33it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:31<00:11,  2.34it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:31<00:10,  2.38it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:32<00:10,  2.30it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:32<00:11,  2.12it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:33<00:10,  2.15it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:34<00:11,  1.95it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:34<00:10,  1.93it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:34<00:09,  2.06it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:35<00:09,  1.99it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:36<00:09,  1.97it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:36<00:08,  2.12it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:36<00:07,  2.16it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:37<00:07,  1.99it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:37<00:07,  1.97it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:38<00:06,  2.02it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:38<00:05,  2.13it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:39<00:05,  2.16it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:39<00:04,  2.12it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:40<00:04,  2.18it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:40<00:03,  2.25it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:41<00:03,  2.22it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:41<00:02,  2.27it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:41<00:02,  2.36it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:42<00:01,  2.22it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:42<00:01,  2.17it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:43<00:00,  2.07it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:43<00:00,  2.09it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:44<00:00,  2.18it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:44<00:00,  2.09it/s]
***** predict_test_nl_NL metrics *****
  predict_ex_match_acc         =     0.5941
  predict_ex_match_acc_stderr  =      0.009
  predict_intent_acc           =     0.8584
  predict_intent_acc_stderr    =     0.0064
  predict_loss                 =     0.4583
  predict_runtime              = 0:00:45.08
  predict_samples              =       2974
  predict_samples_per_second   =     65.959
  predict_slot_micro_f1        =     0.6931
  predict_slot_micro_f1_stderr =     0.0032
  predict_steps_per_second     =      2.063
02/05/2024 23:00:26 - INFO - __main__ - *** test_pl_PL ***
[INFO|trainer.py:718] 2024-02-05 23:00:26,995 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 23:00:26,998 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 23:00:26,998 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 23:00:26,998 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:16,  5.52it/s]
  3%|β–Ž         | 3/93 [00:00<00:25,  3.49it/s]
  4%|▍         | 4/93 [00:01<00:30,  2.96it/s]
  5%|β–Œ         | 5/93 [00:01<00:38,  2.29it/s]
  6%|β–‹         | 6/93 [00:02<00:36,  2.39it/s]
  8%|β–Š         | 7/93 [00:02<00:35,  2.43it/s]
  9%|β–Š         | 8/93 [00:03<00:39,  2.14it/s]
 10%|β–‰         | 9/93 [00:03<00:39,  2.10it/s]
 11%|β–ˆ         | 10/93 [00:04<00:37,  2.21it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:38,  2.15it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:34,  2.33it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:33,  2.36it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:32,  2.45it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:32,  2.36it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:32,  2.35it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:32,  2.36it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:30,  2.43it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:31,  2.35it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:32,  2.24it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:31,  2.29it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:09<00:29,  2.38it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:29,  2.41it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:27,  2.49it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:27,  2.50it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:26,  2.51it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:11<00:25,  2.60it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:11<00:26,  2.42it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:12<00:28,  2.23it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:12<00:26,  2.34it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:12<00:26,  2.37it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:13<00:25,  2.43it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:13<00:24,  2.41it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:14<00:22,  2.57it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:14<00:23,  2.50it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:14<00:25,  2.27it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:15<00:26,  2.13it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:15<00:25,  2.17it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:16<00:23,  2.28it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:16<00:24,  2.20it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:49,  1.06it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:19<00:42,  1.20it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:34,  1.46it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:20<00:30,  1.62it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:20<00:27,  1.76it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:21<00:24,  1.90it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:21<00:21,  2.12it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:19,  2.28it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:22<00:19,  2.26it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:18,  2.32it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:23<00:18,  2.32it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:23<00:17,  2.39it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:23<00:16,  2.49it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:24<00:15,  2.54it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:24<00:14,  2.55it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:25<00:15,  2.32it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:25<00:15,  2.32it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:26<00:14,  2.37it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:26<00:14,  2.42it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:13,  2.37it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:27<00:14,  2.24it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:13,  2.29it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:28<00:12,  2.38it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:28<00:11,  2.52it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:11,  2.40it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:29<00:12,  2.20it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:11,  2.26it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:30<00:10,  2.37it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:30<00:10,  2.33it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:32<00:21,  1.09it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:33<00:17,  1.28it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:33<00:14,  1.46it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:34<00:11,  1.67it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:34<00:10,  1.90it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:34<00:08,  2.06it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:35<00:08,  2.06it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:35<00:08,  1.91it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:36<00:07,  2.05it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:36<00:06,  2.01it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:37<00:06,  2.14it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:37<00:05,  2.00it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:38<00:05,  2.12it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:38<00:04,  2.22it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:38<00:03,  2.43it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:39<00:03,  2.46it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:39<00:02,  2.40it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:40<00:02,  2.30it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:40<00:02,  2.33it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:41<00:01,  2.41it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:41<00:01,  2.12it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:42<00:00,  2.08it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:42<00:00,  2.15it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:43<00:00,  2.29it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:43<00:00,  2.15it/s]
***** predict_test_pl_PL metrics *****
  predict_ex_match_acc         =     0.5901
  predict_ex_match_acc_stderr  =      0.009
  predict_intent_acc           =     0.8521
  predict_intent_acc_stderr    =     0.0065
  predict_loss                 =     0.3363
  predict_runtime              = 0:00:43.71
  predict_samples              =       2974
  predict_samples_per_second   =     68.026
  predict_slot_micro_f1        =     0.7076
  predict_slot_micro_f1_stderr =     0.0035
  predict_steps_per_second     =      2.127
02/05/2024 23:01:10 - INFO - __main__ - *** test_pt_PT ***
[INFO|trainer.py:718] 2024-02-05 23:01:10,962 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 23:01:10,964 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 23:01:10,965 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 23:01:10,965 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:19,  4.70it/s]
  3%|β–Ž         | 3/93 [00:01<00:32,  2.74it/s]
  4%|▍         | 4/93 [00:01<00:34,  2.57it/s]
  5%|β–Œ         | 5/93 [00:01<00:35,  2.48it/s]
  6%|β–‹         | 6/93 [00:02<00:41,  2.07it/s]
  8%|β–Š         | 7/93 [00:02<00:40,  2.13it/s]
  9%|β–Š         | 8/93 [00:03<00:40,  2.08it/s]
 10%|β–‰         | 9/93 [00:03<00:40,  2.09it/s]
 11%|β–ˆ         | 10/93 [00:04<00:39,  2.11it/s]
 12%|β–ˆβ–        | 11/93 [00:05<00:42,  1.92it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:05<00:39,  2.06it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:39,  2.04it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:06<00:36,  2.17it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:35,  2.19it/s]
 17%|β–ˆβ–‹        | 16/93 [00:07<00:36,  2.11it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:39,  1.92it/s]
 19%|β–ˆβ–‰        | 18/93 [00:08<00:36,  2.03it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:38,  1.92it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:09<00:38,  1.89it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:36,  1.99it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:10<00:33,  2.12it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:10<00:33,  2.09it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:11<00:31,  2.20it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:11<00:33,  2.02it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:12<00:31,  2.16it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:12<00:34,  1.92it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:13<00:35,  1.85it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:33,  1.94it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:14<00:30,  2.10it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:28,  2.19it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:15<00:28,  2.12it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:30,  1.97it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:16<00:31,  1.88it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:18<00:58,  1.01s/it]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:19<00:49,  1.16it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:19<00:41,  1.35it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:19<00:36,  1.51it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:20<00:32,  1.64it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:20<00:31,  1.69it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:21<00:29,  1.77it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:21<00:26,  1.94it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:22<00:25,  1.99it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:22<00:25,  1.92it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:23<00:25,  1.88it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:24<00:25,  1.81it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:24<00:23,  1.97it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:24<00:21,  2.05it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:25<00:21,  2.03it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:25<00:21,  2.04it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:26<00:20,  2.01it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:27<00:23,  1.73it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:27<00:23,  1.69it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:28<00:22,  1.72it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:28<00:20,  1.87it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:29<00:19,  1.89it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:29<00:17,  2.02it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:30<00:17,  1.99it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:30<00:16,  2.10it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:31<00:15,  2.17it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:31<00:16,  1.94it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:32<00:15,  1.97it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:32<00:16,  1.85it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:33<00:15,  1.88it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:33<00:14,  1.91it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:34<00:13,  1.97it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:34<00:13,  1.98it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:35<00:12,  2.01it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:35<00:11,  2.08it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:36<00:10,  2.13it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:36<00:10,  2.15it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:37<00:09,  2.24it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:37<00:08,  2.23it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:37<00:08,  2.20it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:38<00:07,  2.28it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:38<00:07,  2.14it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:39<00:07,  2.19it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:39<00:07,  2.06it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:40<00:06,  2.05it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:40<00:06,  2.10it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:41<00:05,  2.17it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:41<00:05,  2.01it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:42<00:04,  2.11it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:42<00:04,  2.15it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:43<00:03,  2.25it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:43<00:03,  2.29it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:43<00:02,  2.24it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:44<00:02,  2.20it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:44<00:01,  2.19it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:45<00:01,  2.03it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:45<00:00,  2.09it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:46<00:00,  2.05it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:46<00:00,  2.13it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:47<00:00,  1.96it/s]
***** predict_test_pt_PT metrics *****
  predict_ex_match_acc         =     0.5723
  predict_ex_match_acc_stderr  =     0.0091
  predict_intent_acc           =     0.8514
  predict_intent_acc_stderr    =     0.0065
  predict_loss                 =     0.4385
  predict_runtime              = 0:00:47.86
  predict_samples              =       2974
  predict_samples_per_second   =     62.134
  predict_slot_micro_f1        =     0.6632
  predict_slot_micro_f1_stderr =     0.0033
  predict_steps_per_second     =      1.943
02/05/2024 23:01:59 - INFO - __main__ - *** test_ru_RU ***
[INFO|trainer.py:718] 2024-02-05 23:01:59,083 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 23:01:59,085 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 23:01:59,086 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 23:01:59,086 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:17,  5.32it/s]
  3%|β–Ž         | 3/93 [00:00<00:25,  3.59it/s]
  4%|▍         | 4/93 [00:01<00:31,  2.78it/s]
  5%|β–Œ         | 5/93 [00:01<00:34,  2.57it/s]
  6%|β–‹         | 6/93 [00:02<00:32,  2.67it/s]
  8%|β–Š         | 7/93 [00:02<00:36,  2.37it/s]
  9%|β–Š         | 8/93 [00:02<00:34,  2.49it/s]
 10%|β–‰         | 9/93 [00:03<00:32,  2.58it/s]
 11%|β–ˆ         | 10/93 [00:03<00:32,  2.59it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:34,  2.40it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:34,  2.38it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:32,  2.49it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:31,  2.51it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:34,  2.27it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:36,  2.09it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:37,  2.03it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:35,  2.12it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:32,  2.25it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:31,  2.32it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:29,  2.46it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:28,  2.48it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:29,  2.33it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:28,  2.42it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:30,  2.24it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:28,  2.31it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:11<00:29,  2.23it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:13<01:01,  1.06it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:49,  1.29it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:14<00:41,  1.50it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:36,  1.69it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:15<00:37,  1.63it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:33,  1.81it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:16<00:31,  1.88it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:16<00:29,  1.93it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:27,  2.08it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:17<00:27,  2.03it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:18<00:27,  1.98it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:18<00:27,  1.98it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:18<00:25,  2.10it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:19<00:23,  2.19it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:19<00:21,  2.35it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:20<00:19,  2.51it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:20<00:19,  2.52it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:20<00:19,  2.49it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:21<00:19,  2.40it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:21<00:18,  2.52it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:22<00:20,  2.22it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:22<00:18,  2.38it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:23<00:19,  2.26it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:23<00:19,  2.10it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:24<00:21,  1.94it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:24<00:18,  2.11it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:25<00:18,  2.16it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:25<00:16,  2.32it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:25<00:15,  2.33it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:26<00:15,  2.28it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:26<00:15,  2.22it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:27<00:14,  2.28it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:27<00:14,  2.34it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:28<00:14,  2.26it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:28<00:13,  2.30it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:28<00:12,  2.39it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:29<00:12,  2.40it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:29<00:11,  2.46it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:30<00:11,  2.42it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:30<00:10,  2.43it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:30<00:10,  2.34it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:31<00:10,  2.24it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:31<00:10,  2.21it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:32<00:10,  2.10it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:32<00:09,  2.21it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:33<00:08,  2.34it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:33<00:08,  2.32it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:34<00:07,  2.30it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:34<00:07,  2.24it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:35<00:07,  2.18it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:35<00:07,  1.99it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:36<00:07,  1.96it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:36<00:06,  1.98it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:37<00:05,  2.14it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:37<00:05,  2.17it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:37<00:04,  2.18it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:38<00:03,  2.27it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:38<00:03,  2.30it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:39<00:03,  2.22it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:39<00:02,  2.24it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:40<00:02,  2.28it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:40<00:01,  2.28it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:40<00:01,  2.28it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:41<00:00,  2.09it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:41<00:00,  2.18it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:42<00:00,  2.35it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:42<00:00,  2.19it/s]
***** predict_test_ru_RU metrics *****
  predict_ex_match_acc         =     0.6513
  predict_ex_match_acc_stderr  =     0.0087
  predict_intent_acc           =     0.8652
  predict_intent_acc_stderr    =     0.0063
  predict_loss                 =     0.2806
  predict_runtime              = 0:00:42.98
  predict_samples              =       2974
  predict_samples_per_second   =      69.18
  predict_slot_micro_f1        =     0.7584
  predict_slot_micro_f1_stderr =     0.0033
  predict_steps_per_second     =      2.163
02/05/2024 23:02:42 - INFO - __main__ - *** test_tr_TR ***
[INFO|trainer.py:718] 2024-02-05 23:02:42,317 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 23:02:42,320 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 23:02:42,320 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 23:02:42,320 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:18,  4.90it/s]
  3%|β–Ž         | 3/93 [00:00<00:25,  3.58it/s]
  4%|▍         | 4/93 [00:01<00:29,  3.03it/s]
  5%|β–Œ         | 5/93 [00:01<00:31,  2.79it/s]
  6%|β–‹         | 6/93 [00:01<00:30,  2.87it/s]
  8%|β–Š         | 7/93 [00:02<00:32,  2.65it/s]
  9%|β–Š         | 8/93 [00:02<00:31,  2.73it/s]
 10%|β–‰         | 9/93 [00:03<00:35,  2.38it/s]
 11%|β–ˆ         | 10/93 [00:03<00:34,  2.44it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:35,  2.34it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:34,  2.37it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:33,  2.38it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:33,  2.38it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:36,  2.15it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:37,  2.07it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:38,  1.98it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:35,  2.12it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:33,  2.21it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:31,  2.30it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:32,  2.24it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:09<00:34,  2.05it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:34,  2.02it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:10<00:31,  2.22it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:29,  2.27it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:27,  2.41it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:11<00:26,  2.47it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:13<00:58,  1.11it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:47,  1.33it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:14<00:42,  1.49it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:34,  1.79it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:31,  1.92it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:30,  1.99it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:26,  2.19it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:16<00:26,  2.15it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:25,  2.23it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:17<00:25,  2.22it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:17<00:26,  2.08it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:18<00:25,  2.13it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:18<00:23,  2.25it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:22,  2.32it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:19<00:21,  2.41it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:20,  2.45it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:20<00:20,  2.39it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:20<00:21,  2.25it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:21<00:21,  2.18it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:21<00:19,  2.37it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:19,  2.32it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:22<00:18,  2.43it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:16,  2.56it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:23<00:18,  2.31it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:23<00:19,  2.11it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:24<00:17,  2.22it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:24<00:16,  2.30it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:24<00:15,  2.43it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:25<00:15,  2.45it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:25<00:14,  2.50it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:26<00:13,  2.56it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:26<00:13,  2.60it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:13,  2.45it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:27<00:14,  2.17it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:14,  2.12it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:28<00:13,  2.25it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:28<00:12,  2.31it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:29<00:11,  2.38it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:29<00:10,  2.47it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:10,  2.47it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:30<00:10,  2.30it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:30<00:11,  2.17it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:31<00:10,  2.19it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:33<00:20,  1.10it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:33<00:15,  1.33it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:34<00:12,  1.56it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:34<00:11,  1.71it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:34<00:09,  1.86it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:35<00:08,  1.97it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:35<00:07,  2.19it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:36<00:06,  2.17it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:36<00:06,  2.15it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:37<00:06,  2.09it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:37<00:05,  2.27it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:37<00:04,  2.34it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:38<00:04,  2.32it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:38<00:03,  2.34it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:39<00:03,  2.38it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:39<00:03,  2.32it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:40<00:02,  2.41it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:40<00:02,  2.45it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:40<00:01,  2.33it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:41<00:01,  2.34it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:41<00:00,  2.21it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:42<00:00,  2.21it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:42<00:00,  2.40it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:42<00:00,  2.17it/s]
***** predict_test_tr_TR metrics *****
  predict_ex_match_acc         =     0.5521
  predict_ex_match_acc_stderr  =     0.0091
  predict_intent_acc           =     0.8285
  predict_intent_acc_stderr    =     0.0069
  predict_loss                 =     0.5882
  predict_runtime              = 0:00:43.26
  predict_samples              =       2974
  predict_samples_per_second   =     68.745
  predict_slot_micro_f1        =     0.6555
  predict_slot_micro_f1_stderr =     0.0037
  predict_steps_per_second     =       2.15
02/05/2024 23:03:25 - INFO - __main__ - *** test_vi_VN ***
[INFO|trainer.py:718] 2024-02-05 23:03:25,808 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: id, intent_str, annot_utt. If id, intent_str, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 23:03:25,811 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 23:03:25,811 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 23:03:25,811 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:23,  3.92it/s]
  3%|β–Ž         | 3/93 [00:01<00:35,  2.55it/s]
  4%|▍         | 4/93 [00:01<00:42,  2.10it/s]
  5%|β–Œ         | 5/93 [00:02<00:44,  1.99it/s]
  6%|β–‹         | 6/93 [00:02<00:41,  2.08it/s]
  8%|β–Š         | 7/93 [00:03<00:45,  1.87it/s]
  9%|β–Š         | 8/93 [00:03<00:43,  1.96it/s]
 10%|β–‰         | 9/93 [00:04<00:42,  1.97it/s]
 11%|β–ˆ         | 10/93 [00:04<00:42,  1.95it/s]
 12%|β–ˆβ–        | 11/93 [00:05<00:48,  1.69it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:06<00:46,  1.72it/s]
 14%|β–ˆβ–        | 13/93 [00:06<00:45,  1.77it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:07<00:44,  1.76it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:07<00:47,  1.64it/s]
 17%|β–ˆβ–‹        | 16/93 [00:08<00:50,  1.54it/s]
 18%|β–ˆβ–Š        | 17/93 [00:09<00:49,  1.52it/s]
 19%|β–ˆβ–‰        | 18/93 [00:09<00:48,  1.56it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:10<00:44,  1.67it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:10<00:41,  1.76it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:11<00:39,  1.82it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:12<00:38,  1.85it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:12<00:39,  1.75it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:13<00:39,  1.73it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:13<00:40,  1.66it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:14<00:37,  1.77it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:14<00:38,  1.73it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:17<01:08,  1.05s/it]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:17<00:58,  1.10it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:18<00:52,  1.19it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:18<00:46,  1.34it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:19<00:41,  1.47it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:20<00:38,  1.57it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:20<00:35,  1.64it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:21<00:36,  1.61it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:21<00:34,  1.63it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:22<00:33,  1.66it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:23<00:34,  1.61it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:25<00:56,  1.04s/it]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:25<00:47,  1.11it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:26<00:41,  1.27it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:26<00:36,  1.38it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:27<00:33,  1.48it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:27<00:31,  1.56it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:28<00:29,  1.62it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:29<00:30,  1.56it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:29<00:27,  1.65it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:30<00:29,  1.53it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:30<00:26,  1.67it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:31<00:25,  1.67it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:33<00:43,  1.03s/it]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:34<00:38,  1.06it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:34<00:33,  1.21it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:35<00:28,  1.37it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:35<00:24,  1.55it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:36<00:22,  1.64it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:36<00:21,  1.71it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:37<00:21,  1.65it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:37<00:19,  1.74it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:38<00:19,  1.72it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:39<00:19,  1.67it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:39<00:18,  1.65it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:40<00:17,  1.74it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:40<00:15,  1.86it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:41<00:14,  1.88it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:41<00:14,  1.85it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:42<00:14,  1.80it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:43<00:14,  1.69it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:43<00:15,  1.53it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:44<00:14,  1.56it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:46<00:23,  1.05s/it]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:47<00:19,  1.09it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:47<00:16,  1.24it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:48<00:14,  1.36it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:50<00:20,  1.12s/it]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:51<00:17,  1.00s/it]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:51<00:14,  1.08it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:52<00:13,  1.13it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:53<00:11,  1.24it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:53<00:09,  1.34it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:54<00:08,  1.46it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:54<00:07,  1.56it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:55<00:07,  1.38it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:56<00:06,  1.50it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:56<00:05,  1.55it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:57<00:04,  1.62it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:57<00:03,  1.75it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:58<00:02,  1.91it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:58<00:02,  1.93it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:59<00:01,  1.90it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [01:00<00:01,  1.75it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [01:00<00:00,  1.71it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [01:01<00:00,  1.75it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [01:01<00:00,  1.51it/s]
***** predict_test_vi_VN metrics *****
  predict_ex_match_acc         =     0.5215
  predict_ex_match_acc_stderr  =     0.0092
  predict_intent_acc           =     0.7774
  predict_intent_acc_stderr    =     0.0076
  predict_loss                 =      0.325
  predict_runtime              = 0:01:02.07
  predict_samples              =       2974
  predict_samples_per_second   =     47.909
  predict_slot_micro_f1        =     0.6561
  predict_slot_micro_f1_stderr =     0.0029
  predict_steps_per_second     =      1.498