File size: 99,767 Bytes
8048f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the --report_to flag to control the integrations used for logging result (for instance --report_to none).
02/05/2024 18:47:23 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: False, 16-bits training: False
02/05/2024 18:47:23 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=2,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=True,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=input_length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/cascaded_SLU/runs/Feb05_18-47-22_chasma-02,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=3.0,
optim=adamw_torch,
optim_args=None,
output_dir=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/cascaded_SLU,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=32,
per_device_train_batch_size=8,
predict_with_generate=True,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/cascaded_SLU,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=steps,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
Loading Dataset Infos from /beegfs/scratch/user/blee/hugging-face/models/modules/datasets_modules/datasets/speech_massive_cascaded/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
02/05/2024 18:47:23 - INFO - datasets.info - Loading Dataset Infos from /beegfs/scratch/user/blee/hugging-face/models/modules/datasets_modules/datasets/speech_massive_cascaded/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
Overwrite dataset info from restored data version if exists.
02/05/2024 18:47:23 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
02/05/2024 18:47:23 - INFO - datasets.info - Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
Found cached dataset speech_massive_cascaded (/beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293)
02/05/2024 18:47:23 - INFO - datasets.builder - Found cached dataset speech_massive_cascaded (/beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293)
Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
02/05/2024 18:47:23 - INFO - datasets.info - Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293
[INFO|configuration_utils.py:737] 2024-02-05 18:47:23,241 >> loading configuration file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/config.json
[INFO|configuration_utils.py:802] 2024-02-05 18:47:23,251 >> Model config MT5Config {
  "_name_or_path": "/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407",
  "architectures": [
    "MT5ForConditionalGeneration"
  ],
  "classifier_dropout": 0.0,
  "d_ff": 2048,
  "d_kv": 64,
  "d_model": 768,
  "decoder_start_token_id": 0,
  "dense_act_fn": "gelu_new",
  "dropout": 0.2,
  "dropout_rate": 0.1,
  "eos_token_id": 1,
  "feed_forward_proj": "gated-gelu",
  "initializer_factor": 1.0,
  "is_encoder_decoder": true,
  "is_gated_act": true,
  "layer_norm_epsilon": 1e-06,
  "model_type": "mt5",
  "num_decoder_layers": 12,
  "num_heads": 12,
  "num_layers": 12,
  "output_past": true,
  "pad_token_id": 0,
  "relative_attention_max_distance": 128,
  "relative_attention_num_buckets": 32,
  "tie_word_embeddings": false,
  "tokenizer_class": "T5Tokenizer",
  "torch_dtype": "float32",
  "transformers_version": "4.37.0.dev0",
  "use_cache": true,
  "vocab_size": 250112
}

[INFO|tokenization_utils_base.py:2024] 2024-02-05 18:47:23,254 >> loading file spiece.model
[INFO|tokenization_utils_base.py:2024] 2024-02-05 18:47:23,254 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:2024] 2024-02-05 18:47:23,254 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2024] 2024-02-05 18:47:23,255 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2024] 2024-02-05 18:47:23,255 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:3373] 2024-02-05 18:47:23,703 >> loading weights file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/model.safetensors
[INFO|configuration_utils.py:826] 2024-02-05 18:47:23,890 >> Generate config GenerationConfig {
  "decoder_start_token_id": 0,
  "eos_token_id": 1,
  "pad_token_id": 0
}

[INFO|modeling_utils.py:4224] 2024-02-05 18:47:28,850 >> All model checkpoint weights were used when initializing MT5ForConditionalGeneration.

[INFO|modeling_utils.py:4232] 2024-02-05 18:47:28,857 >> All the weights of MT5ForConditionalGeneration were initialized from the model checkpoint at /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407.
If your task is similar to the task the model of the checkpoint was trained on, you can already use MT5ForConditionalGeneration for predictions without further training.
[INFO|configuration_utils.py:779] 2024-02-05 18:47:28,863 >> loading configuration file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/generation_config.json
[INFO|configuration_utils.py:826] 2024-02-05 18:47:28,864 >> Generate config GenerationConfig {
  "decoder_start_token_id": 0,
  "eos_token_id": 1,
  "pad_token_id": 0
}


Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-a28263cfb71413f6.arrow
02/05/2024 18:47:29 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-a28263cfb71413f6.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 10526.21 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 10282.67 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-0f6b9ba1cc4e5fb1.arrow
02/05/2024 18:47:29 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-0f6b9ba1cc4e5fb1.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 21768.02 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 20740.13 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-cd10216b4341f1a2.arrow
02/05/2024 18:47:29 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-cd10216b4341f1a2.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 21336.19 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 20262.24 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-cf09cb968cef4c56.arrow
02/05/2024 18:47:29 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-cf09cb968cef4c56.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 20894.52 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 19789.16 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-b372c4d6e9ad447f.arrow
02/05/2024 18:47:29 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-b372c4d6e9ad447f.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 10819.03 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 10482.08 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-5e85733ab0d7983c.arrow
02/05/2024 18:47:30 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-5e85733ab0d7983c.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 19433.65 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 18477.60 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-3498127f38d0e88c.arrow
02/05/2024 18:47:30 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-3498127f38d0e88c.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 21220.04 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 20249.02 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-5031b1ae09c119f0.arrow
02/05/2024 18:47:30 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-5031b1ae09c119f0.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 22030.41 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 21147.80 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-afad46b8cc76fbde.arrow
02/05/2024 18:47:30 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-afad46b8cc76fbde.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 21270.91 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 20297.85 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-44bbdcb1f95b0505.arrow
02/05/2024 18:47:31 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-44bbdcb1f95b0505.arrow

Running tokenizer on prediction dataset:  34%|β–ˆβ–ˆβ–ˆβ–Ž      | 1000/2974 [00:00<00:00, 5169.56 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 10278.78 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-649defd19aa00c44.arrow
02/05/2024 18:47:31 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-649defd19aa00c44.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 22109.21 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 21308.60 examples/s]

Running tokenizer on prediction dataset:   0%|          | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-bc58b34f0f2e6d55.arrow
02/05/2024 18:47:31 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/speech_massive_cascaded/multilingual-test/1.0.0/f36c9e4210ec02a91ee05c9fa785d90aec211ba2025363c65b643c68e109b293/cache-bc58b34f0f2e6d55.arrow

Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 19544.58 examples/s]
Running tokenizer on prediction dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2974/2974 [00:00<00:00, 18677.47 examples/s]
02/05/2024 18:47:52 - WARNING - accelerate.utils.other - Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
02/05/2024 18:47:53 - INFO - __main__ - *** Predict ***
02/05/2024 18:47:53 - INFO - __main__ - *** test_ar_SA ***
[INFO|trainer.py:718] 2024-02-05 18:47:53,119 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:47:53,129 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:47:53,129 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:47:53,130 >>   Batch size = 32
[WARNING|logging.py:314] 2024-02-05 18:47:53,134 >> You're using a T5TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:18,  5.04it/s]
  3%|β–Ž         | 3/93 [00:00<00:22,  3.94it/s]
  4%|▍         | 4/93 [00:01<00:29,  3.00it/s]
  5%|β–Œ         | 5/93 [00:01<00:34,  2.51it/s]
  6%|β–‹         | 6/93 [00:02<00:33,  2.61it/s]
  8%|β–Š         | 7/93 [00:02<00:35,  2.44it/s]
  9%|β–Š         | 8/93 [00:02<00:33,  2.56it/s]
 10%|β–‰         | 9/93 [00:03<00:33,  2.52it/s]
 11%|β–ˆ         | 10/93 [00:03<00:32,  2.56it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:32,  2.52it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:31,  2.60it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:30,  2.65it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:30,  2.56it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:31,  2.45it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:34,  2.24it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:34,  2.21it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:32,  2.29it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:30,  2.42it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:29,  2.48it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:28,  2.53it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:31,  2.23it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:30,  2.28it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:30,  2.23it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:29,  2.30it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:29,  2.24it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:29,  2.24it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:13<01:00,  1.08it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:49,  1.29it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:13<00:41,  1.52it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:37,  1.67it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:33,  1.81it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:30,  1.95it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:27,  2.13it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:15<00:24,  2.35it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:23,  2.39it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:16<00:24,  2.33it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:17<00:25,  2.18it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:17<00:24,  2.20it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:18<00:22,  2.31it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:22,  2.33it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:18<00:21,  2.40it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:19,  2.54it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:19<00:18,  2.68it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:19<00:18,  2.59it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:20<00:19,  2.47it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:20<00:19,  2.34it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:20,  2.22it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:21<00:18,  2.34it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:18,  2.38it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:22<00:20,  2.06it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:23<00:18,  2.16it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:23<00:17,  2.29it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:24<00:17,  2.27it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:24<00:16,  2.25it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:24<00:15,  2.34it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:25<00:15,  2.40it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:25<00:14,  2.36it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:26<00:13,  2.53it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:12,  2.68it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:26<00:13,  2.45it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:12,  2.52it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:27<00:11,  2.69it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:27<00:10,  2.72it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:10,  2.68it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:28<00:10,  2.62it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:09,  2.64it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:29<00:09,  2.64it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:29<00:09,  2.47it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:30<00:09,  2.40it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:30<00:09,  2.26it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:31<00:09,  2.24it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:31<00:08,  2.35it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:32<00:08,  2.35it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:32<00:07,  2.39it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:32<00:06,  2.49it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:33<00:06,  2.61it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:33<00:05,  2.64it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:34<00:05,  2.49it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:34<00:05,  2.42it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:34<00:05,  2.38it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:35<00:04,  2.53it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:35<00:03,  2.58it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:35<00:03,  2.60it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:36<00:03,  2.32it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:37<00:03,  2.19it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:37<00:02,  2.29it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:37<00:02,  2.45it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:38<00:01,  2.42it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:38<00:01,  2.35it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:39<00:00,  2.15it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:39<00:00,  2.12it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.29it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:40<00:00,  2.31it/s]
***** predict_test_ar_SA metrics *****
  predict_ex_match_acc         =     0.4455
  predict_ex_match_acc_stderr  =     0.0091
  predict_intent_acc           =     0.7061
  predict_intent_acc_stderr    =     0.0084
  predict_loss                 =     0.5896
  predict_runtime              = 0:00:41.25
  predict_samples              =       2974
  predict_samples_per_second   =      72.09
  predict_slot_micro_f1        =     0.5994
  predict_slot_micro_f1_stderr =     0.0039
  predict_steps_per_second     =      2.254
02/05/2024 18:48:34 - INFO - __main__ - *** test_de_DE ***
[INFO|trainer.py:718] 2024-02-05 18:48:34,602 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:48:34,605 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:48:34,605 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:48:34,605 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:18,  4.97it/s]
  3%|β–Ž         | 3/93 [00:00<00:23,  3.84it/s]
  4%|▍         | 4/93 [00:01<00:31,  2.84it/s]
  5%|β–Œ         | 5/93 [00:01<00:31,  2.80it/s]
  6%|β–‹         | 6/93 [00:01<00:30,  2.88it/s]
  8%|β–Š         | 7/93 [00:02<00:32,  2.66it/s]
  9%|β–Š         | 8/93 [00:02<00:31,  2.69it/s]
 10%|β–‰         | 9/93 [00:03<00:32,  2.56it/s]
 11%|β–ˆ         | 10/93 [00:03<00:30,  2.73it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:30,  2.68it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:31,  2.55it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:30,  2.64it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:29,  2.66it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:33,  2.35it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:34,  2.21it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:34,  2.18it/s]
 19%|β–ˆβ–‰        | 18/93 [00:06<00:32,  2.28it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:32,  2.26it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:31,  2.31it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:30,  2.34it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:34,  2.08it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:33,  2.06it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:31,  2.16it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:30,  2.23it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:29,  2.27it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:27,  2.37it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:13<00:59,  1.08it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:48,  1.33it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:13<00:42,  1.49it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:35,  1.73it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:33,  1.84it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:32,  1.85it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:29,  2.03it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:16<00:28,  2.03it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:26,  2.14it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:16<00:25,  2.20it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:17<00:24,  2.27it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:17<00:24,  2.17it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:18<00:23,  2.28it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:21,  2.38it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:19<00:21,  2.37it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:20,  2.40it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:19<00:19,  2.48it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:20<00:19,  2.45it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:20<00:18,  2.54it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:20<00:17,  2.63it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:17,  2.55it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:21<00:17,  2.53it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:18,  2.29it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:22<00:18,  2.26it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:23<00:20,  2.00it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:23<00:18,  2.12it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:24<00:17,  2.23it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:24<00:16,  2.35it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:24<00:14,  2.48it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:25<00:15,  2.40it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:25<00:15,  2.33it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:26<00:14,  2.38it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:13,  2.43it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:27<00:14,  2.25it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:13,  2.24it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:28<00:13,  2.30it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:28<00:13,  2.17it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:11,  2.37it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:29<00:11,  2.42it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:10,  2.46it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:30<00:10,  2.42it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:30<00:10,  2.25it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:31<00:10,  2.18it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:31<00:10,  2.12it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:32<00:10,  2.02it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:32<00:09,  2.11it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:32<00:08,  2.15it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:33<00:08,  2.15it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:33<00:07,  2.13it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:34<00:07,  2.20it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:35<00:08,  1.78it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:35<00:07,  1.90it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:36<00:06,  1.99it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:36<00:05,  2.15it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:36<00:04,  2.21it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:37<00:04,  2.30it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:37<00:03,  2.34it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:38<00:03,  2.38it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:38<00:02,  2.38it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:38<00:02,  2.38it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:39<00:02,  2.46it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:39<00:01,  2.42it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:40<00:01,  2.48it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:40<00:00,  2.25it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:41<00:00,  2.36it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.45it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.23it/s]
***** predict_test_de_DE metrics *****
  predict_ex_match_acc         =     0.5662
  predict_ex_match_acc_stderr  =     0.0091
  predict_intent_acc           =     0.8366
  predict_intent_acc_stderr    =     0.0068
  predict_loss                 =     0.4835
  predict_runtime              = 0:00:42.06
  predict_samples              =       2974
  predict_samples_per_second   =     70.707
  predict_slot_micro_f1        =     0.6886
  predict_slot_micro_f1_stderr =     0.0033
  predict_steps_per_second     =      2.211
02/05/2024 18:49:16 - INFO - __main__ - *** test_es_ES ***
[INFO|trainer.py:718] 2024-02-05 18:49:16,902 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:49:16,904 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:49:16,904 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:49:16,905 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:19,  4.65it/s]
  3%|β–Ž         | 3/93 [00:00<00:28,  3.18it/s]
  4%|▍         | 4/93 [00:01<00:35,  2.51it/s]
  5%|β–Œ         | 5/93 [00:01<00:37,  2.33it/s]
  6%|β–‹         | 6/93 [00:02<00:37,  2.35it/s]
  8%|β–Š         | 7/93 [00:02<00:37,  2.30it/s]
  9%|β–Š         | 8/93 [00:03<00:35,  2.41it/s]
 10%|β–‰         | 9/93 [00:03<00:35,  2.39it/s]
 11%|β–ˆ         | 10/93 [00:03<00:34,  2.41it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:35,  2.32it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:37,  2.16it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:36,  2.19it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:35,  2.21it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:38,  2.05it/s]
 17%|β–ˆβ–‹        | 16/93 [00:07<00:39,  1.96it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:37,  2.04it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:35,  2.12it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:35,  2.11it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:33,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:32,  2.22it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:09<00:37,  1.89it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:10<00:37,  1.89it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:10<00:35,  1.95it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:11<00:33,  2.05it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:11<00:32,  2.08it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:12<00:31,  2.10it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:14<01:02,  1.03it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:14<00:51,  1.23it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:15<00:45,  1.40it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:15<00:38,  1.61it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:16<00:37,  1.64it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:17<00:38,  1.54it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:17<00:34,  1.71it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:17<00:32,  1.81it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:18<00:31,  1.83it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:19<00:32,  1.72it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:19<00:31,  1.73it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:20<00:29,  1.83it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:20<00:28,  1.89it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:21<00:25,  2.02it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:21<00:24,  2.08it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:21<00:22,  2.20it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:22<00:21,  2.30it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:22<00:21,  2.20it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:23<00:23,  2.01it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:23<00:21,  2.17it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:24<00:24,  1.85it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:24<00:21,  2.02it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:25<00:21,  1.98it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:25<00:20,  2.08it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:26<00:22,  1.81it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:27<00:20,  1.96it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:27<00:19,  2.03it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:27<00:17,  2.12it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:28<00:17,  2.15it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:28<00:17,  2.01it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:29<00:16,  2.07it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:29<00:17,  1.98it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:30<00:15,  2.14it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:30<00:15,  2.10it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:31<00:15,  2.01it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:31<00:13,  2.18it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:32<00:12,  2.28it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:32<00:11,  2.34it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:32<00:11,  2.40it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:33<00:13,  1.96it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:34<00:13,  1.89it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:34<00:12,  1.88it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:35<00:12,  1.90it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:35<00:12,  1.82it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:36<00:10,  1.94it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:36<00:09,  2.06it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:37<00:09,  2.03it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:37<00:09,  1.96it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:38<00:09,  1.85it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:38<00:08,  1.82it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:40<00:14,  1.01it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:41<00:11,  1.22it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:41<00:09,  1.35it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:42<00:07,  1.52it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:42<00:06,  1.68it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:43<00:05,  1.83it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:43<00:04,  1.91it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:44<00:04,  1.92it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:44<00:03,  1.92it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:45<00:02,  2.02it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:45<00:02,  2.18it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:46<00:01,  2.07it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:46<00:01,  2.16it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:47<00:00,  2.03it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:47<00:00,  2.03it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:47<00:00,  2.21it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:48<00:00,  1.92it/s]
***** predict_test_es_ES metrics *****
  predict_ex_match_acc         =     0.6009
  predict_ex_match_acc_stderr  =      0.009
  predict_intent_acc           =     0.8521
  predict_intent_acc_stderr    =     0.0065
  predict_loss                 =     0.2917
  predict_runtime              = 0:00:48.87
  predict_samples              =       2974
  predict_samples_per_second   =     60.848
  predict_slot_micro_f1        =     0.7136
  predict_slot_micro_f1_stderr =     0.0031
  predict_steps_per_second     =      1.903
02/05/2024 18:50:06 - INFO - __main__ - *** test_fr_FR ***
[INFO|trainer.py:718] 2024-02-05 18:50:06,022 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:50:06,024 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:50:06,025 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:50:06,025 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:19,  4.63it/s]
  3%|β–Ž         | 3/93 [00:00<00:29,  3.02it/s]
  4%|▍         | 4/93 [00:01<00:35,  2.49it/s]
  5%|β–Œ         | 5/93 [00:01<00:40,  2.20it/s]
  6%|β–‹         | 6/93 [00:02<00:39,  2.20it/s]
  8%|β–Š         | 7/93 [00:02<00:40,  2.14it/s]
  9%|β–Š         | 8/93 [00:03<00:38,  2.20it/s]
 10%|β–‰         | 9/93 [00:03<00:38,  2.20it/s]
 11%|β–ˆ         | 10/93 [00:04<00:36,  2.26it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:38,  2.12it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:05<00:38,  2.09it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:38,  2.07it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:06<00:39,  2.02it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:40,  1.92it/s]
 17%|β–ˆβ–‹        | 16/93 [00:07<00:41,  1.86it/s]
 18%|β–ˆβ–Š        | 17/93 [00:08<00:42,  1.79it/s]
 19%|β–ˆβ–‰        | 18/93 [00:08<00:39,  1.91it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:36,  2.00it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:09<00:36,  1.99it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:34,  2.08it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:10<00:36,  1.92it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:11<00:37,  1.86it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:11<00:38,  1.81it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:12<00:36,  1.85it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:12<00:34,  1.94it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:13<00:33,  1.98it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:15<01:04,  1.01it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:15<00:52,  1.21it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:16<00:45,  1.38it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:16<00:39,  1.58it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:17<00:36,  1.68it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:17<00:33,  1.81it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:17<00:29,  1.97it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:18<00:31,  1.84it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:19<00:30,  1.88it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:19<00:29,  1.87it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:20<00:30,  1.81it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:20<00:29,  1.85it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:21<00:28,  1.88it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:21<00:27,  1.91it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:22<00:25,  1.97it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:22<00:25,  1.95it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:23<00:23,  2.07it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:23<00:23,  2.06it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:24<00:22,  2.12it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:24<00:21,  2.14it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:25<00:23,  1.89it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:25<00:23,  1.87it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:26<00:22,  1.88it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:26<00:21,  1.94it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:27<00:24,  1.67it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:27<00:21,  1.84it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:28<00:20,  1.94it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:28<00:19,  1.96it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:29<00:18,  1.98it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:29<00:17,  2.01it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:30<00:17,  2.00it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:30<00:16,  2.04it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:31<00:15,  2.14it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:31<00:16,  1.98it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:32<00:15,  1.98it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:32<00:14,  2.12it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:33<00:13,  2.23it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:33<00:12,  2.29it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:34<00:11,  2.28it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:34<00:11,  2.23it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:35<00:12,  1.94it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:35<00:12,  1.89it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:36<00:12,  1.86it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:38<00:21,  1.02it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:38<00:17,  1.18it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:39<00:14,  1.39it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:39<00:12,  1.52it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:40<00:11,  1.57it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:40<00:10,  1.60it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:41<00:09,  1.68it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:42<00:09,  1.65it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:42<00:07,  1.78it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:43<00:07,  1.82it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:43<00:06,  1.91it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:43<00:05,  2.00it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:44<00:04,  2.12it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:44<00:04,  2.14it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:45<00:03,  2.06it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:45<00:03,  2.09it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:46<00:02,  2.14it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:46<00:02,  2.20it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:47<00:01,  2.11it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:47<00:01,  2.13it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:48<00:01,  1.96it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:48<00:00,  1.86it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:49<00:00,  2.05it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:49<00:00,  1.88it/s]
***** predict_test_fr_FR metrics *****
  predict_ex_match_acc         =      0.459
  predict_ex_match_acc_stderr  =     0.0091
  predict_intent_acc           =     0.8366
  predict_intent_acc_stderr    =     0.0068
  predict_loss                 =      0.675
  predict_runtime              = 0:00:50.06
  predict_samples              =       2974
  predict_samples_per_second   =     59.402
  predict_slot_micro_f1        =     0.5132
  predict_slot_micro_f1_stderr =     0.0034
  predict_steps_per_second     =      1.858
02/05/2024 18:50:56 - INFO - __main__ - *** test_hu_HU ***
[INFO|trainer.py:718] 2024-02-05 18:50:56,344 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:50:56,347 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:50:56,347 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:50:56,347 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:15,  5.76it/s]
  3%|β–Ž         | 3/93 [00:00<00:22,  4.06it/s]
  4%|▍         | 4/93 [00:01<00:33,  2.67it/s]
  5%|β–Œ         | 5/93 [00:01<00:33,  2.66it/s]
  6%|β–‹         | 6/93 [00:01<00:31,  2.77it/s]
  8%|β–Š         | 7/93 [00:02<00:32,  2.65it/s]
  9%|β–Š         | 8/93 [00:02<00:31,  2.69it/s]
 10%|β–‰         | 9/93 [00:03<00:31,  2.67it/s]
 11%|β–ˆ         | 10/93 [00:03<00:31,  2.61it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:30,  2.66it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:31,  2.57it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:32,  2.45it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:32,  2.43it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:31,  2.50it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:35,  2.16it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:35,  2.16it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:33,  2.22it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:31,  2.38it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:07<00:29,  2.50it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:29,  2.48it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:28,  2.50it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:29,  2.36it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:30,  2.27it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:09<00:29,  2.28it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:28,  2.38it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:10<00:26,  2.48it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:12<00:59,  1.09it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:48,  1.33it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:13<00:42,  1.47it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:36,  1.71it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:34,  1.76it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:33,  1.81it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:30,  1.93it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:15<00:28,  2.06it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:26,  2.14it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:16<00:25,  2.22it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:17<00:25,  2.18it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:17<00:25,  2.14it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:18<00:23,  2.24it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:22,  2.33it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:18<00:21,  2.40it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:20,  2.49it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:19<00:21,  2.25it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:20<00:21,  2.26it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:20<00:21,  2.22it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:21<00:19,  2.33it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:19,  2.35it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:21<00:17,  2.45it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:17,  2.49it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:22<00:16,  2.51it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:23<00:16,  2.47it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:23<00:16,  2.42it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:23<00:16,  2.35it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:24<00:15,  2.43it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:24<00:14,  2.52it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:25<00:14,  2.47it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:25<00:13,  2.54it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:25<00:12,  2.62it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:12,  2.68it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:26<00:13,  2.33it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:12,  2.41it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:27<00:12,  2.46it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:28<00:13,  2.16it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:11,  2.34it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:28<00:11,  2.38it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:10,  2.45it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:29<00:11,  2.26it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:30<00:11,  2.13it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:30<00:10,  2.21it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:31<00:11,  1.99it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:31<00:09,  2.12it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:32<00:08,  2.23it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:32<00:08,  2.25it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:33<00:08,  2.23it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:33<00:07,  2.30it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:33<00:06,  2.31it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:34<00:06,  2.26it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:34<00:06,  2.16it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:35<00:06,  2.12it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:35<00:05,  2.28it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:36<00:04,  2.22it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:36<00:04,  2.22it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:37<00:03,  2.32it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:37<00:03,  2.19it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:38<00:03,  1.98it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:38<00:02,  2.09it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:38<00:02,  2.26it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:39<00:01,  2.18it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:39<00:01,  2.30it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:40<00:00,  2.17it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:40<00:00,  2.18it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.39it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.25it/s]
***** predict_test_hu_HU metrics *****
  predict_ex_match_acc         =      0.273
  predict_ex_match_acc_stderr  =     0.0082
  predict_intent_acc           =     0.5454
  predict_intent_acc_stderr    =     0.0091
  predict_loss                 =     0.7601
  predict_runtime              = 0:00:41.75
  predict_samples              =       2974
  predict_samples_per_second   =     71.228
  predict_slot_micro_f1        =     0.5011
  predict_slot_micro_f1_stderr =     0.0038
  predict_steps_per_second     =      2.227
02/05/2024 18:51:38 - INFO - __main__ - *** test_ko_KR ***
[INFO|trainer.py:718] 2024-02-05 18:51:38,346 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:51:38,349 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:51:38,349 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:51:38,350 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:18,  5.00it/s]
  3%|β–Ž         | 3/93 [00:00<00:21,  4.24it/s]
  4%|▍         | 4/93 [00:01<00:25,  3.45it/s]
  5%|β–Œ         | 5/93 [00:01<00:26,  3.35it/s]
  6%|β–‹         | 6/93 [00:01<00:25,  3.38it/s]
  8%|β–Š         | 7/93 [00:02<00:26,  3.21it/s]
  9%|β–Š         | 8/93 [00:02<00:27,  3.14it/s]
 10%|β–‰         | 9/93 [00:02<00:27,  3.07it/s]
 11%|β–ˆ         | 10/93 [00:03<00:27,  3.06it/s]
 12%|β–ˆβ–        | 11/93 [00:03<00:27,  3.03it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:03<00:28,  2.85it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:29,  2.72it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:04<00:28,  2.81it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:04<00:28,  2.72it/s]
 17%|β–ˆβ–‹        | 16/93 [00:05<00:27,  2.76it/s]
 18%|β–ˆβ–Š        | 17/93 [00:05<00:27,  2.77it/s]
 19%|β–ˆβ–‰        | 18/93 [00:05<00:27,  2.69it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:06<00:27,  2.71it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:06<00:27,  2.69it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:07<00:25,  2.78it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:07<00:25,  2.78it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:07<00:25,  2.73it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:08<00:24,  2.85it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:08<00:24,  2.77it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:08<00:25,  2.65it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:09<00:24,  2.74it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:09<00:24,  2.63it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:10<00:23,  2.74it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:10<00:23,  2.74it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:10<00:22,  2.80it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:11<00:22,  2.65it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:11<00:22,  2.67it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:11<00:21,  2.77it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:12<00:23,  2.47it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:12<00:21,  2.60it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:13<00:20,  2.67it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:13<00:21,  2.61it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:13<00:21,  2.57it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:14<00:20,  2.61it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:14<00:19,  2.67it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:14<00:18,  2.77it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:15<00:18,  2.70it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:15<00:17,  2.73it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:15<00:17,  2.81it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:16<00:16,  2.89it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:16<00:15,  2.88it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:17<00:16,  2.79it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:17<00:15,  2.89it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:17<00:15,  2.82it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:18<00:14,  2.84it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:18<00:15,  2.69it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:18<00:15,  2.64it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:19<00:14,  2.72it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:19<00:13,  2.82it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:19<00:13,  2.77it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:20<00:13,  2.67it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:20<00:12,  2.73it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:21<00:12,  2.76it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:21<00:11,  2.83it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:21<00:11,  2.69it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:22<00:11,  2.78it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:22<00:10,  2.89it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:22<00:10,  2.86it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:23<00:09,  2.90it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:23<00:09,  2.98it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:23<00:09,  2.70it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:24<00:09,  2.64it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:24<00:08,  2.83it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:24<00:08,  2.74it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:25<00:08,  2.61it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:25<00:08,  2.59it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:26<00:07,  2.69it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:26<00:07,  2.54it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:26<00:07,  2.52it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:27<00:06,  2.60it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:27<00:05,  2.70it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:28<00:05,  2.64it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:28<00:05,  2.67it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:28<00:04,  2.75it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:29<00:04,  2.81it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:29<00:04,  2.69it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:29<00:03,  2.68it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:30<00:03,  2.74it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:30<00:03,  2.63it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:31<00:02,  2.63it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:31<00:02,  2.79it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:31<00:01,  2.86it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:32<00:01,  2.83it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:32<00:01,  2.76it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:32<00:00,  2.77it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:33<00:00,  2.75it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:33<00:00,  2.75it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:33<00:00,  2.76it/s]
***** predict_test_ko_KR metrics *****
  predict_ex_match_acc         =     0.0333
  predict_ex_match_acc_stderr  =     0.0033
  predict_intent_acc           =     0.0568
  predict_intent_acc_stderr    =     0.0042
  predict_loss                 =     1.5014
  predict_runtime              = 0:00:34.05
  predict_samples              =       2974
  predict_samples_per_second   =      87.32
  predict_slot_micro_f1        =     0.1925
  predict_slot_micro_f1_stderr =     0.0033
  predict_steps_per_second     =      2.731
02/05/2024 18:52:12 - INFO - __main__ - *** test_nl_NL ***
[INFO|trainer.py:718] 2024-02-05 18:52:12,643 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:52:12,646 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:52:12,646 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:52:12,646 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:19,  4.55it/s]
  3%|β–Ž         | 3/93 [00:00<00:31,  2.84it/s]
  4%|▍         | 4/93 [00:01<00:33,  2.66it/s]
  5%|β–Œ         | 5/93 [00:01<00:33,  2.65it/s]
  6%|β–‹         | 6/93 [00:02<00:33,  2.58it/s]
  8%|β–Š         | 7/93 [00:02<00:35,  2.42it/s]
  9%|β–Š         | 8/93 [00:03<00:35,  2.41it/s]
 10%|β–‰         | 9/93 [00:03<00:35,  2.34it/s]
 11%|β–ˆ         | 10/93 [00:03<00:36,  2.27it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:36,  2.22it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:36,  2.19it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:36,  2.20it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:34,  2.26it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:38,  2.00it/s]
 17%|β–ˆβ–‹        | 16/93 [00:07<00:40,  1.92it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:40,  1.90it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:37,  1.99it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:35,  2.07it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:34,  2.12it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:32,  2.20it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:09<00:36,  1.97it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:10<00:34,  2.04it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:10<00:34,  2.01it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:11<00:33,  2.05it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:11<00:31,  2.12it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:12<00:30,  2.20it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:14<01:01,  1.06it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:14<00:49,  1.30it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:15<00:42,  1.48it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:15<00:37,  1.66it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:16<00:34,  1.75it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:16<00:34,  1.76it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:16<00:30,  1.94it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:17<00:29,  1.96it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:17<00:27,  2.06it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:18<00:26,  2.10it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:19<00:30,  1.79it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:19<00:30,  1.80it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:20<00:27,  1.95it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:20<00:24,  2.11it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:20<00:23,  2.18it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:21<00:21,  2.29it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:21<00:20,  2.35it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:22<00:20,  2.30it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:22<00:20,  2.31it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:22<00:19,  2.41it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:23<00:18,  2.39it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:23<00:18,  2.41it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:24<00:17,  2.44it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:24<00:19,  2.20it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:25<00:19,  2.12it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:25<00:19,  2.09it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:26<00:18,  2.16it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:26<00:16,  2.31it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:26<00:15,  2.37it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:27<00:15,  2.35it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:27<00:15,  2.26it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:28<00:14,  2.29it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:28<00:14,  2.35it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:29<00:14,  2.17it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:29<00:14,  2.15it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:30<00:13,  2.29it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:30<00:13,  2.17it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:30<00:11,  2.34it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:31<00:11,  2.35it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:31<00:10,  2.39it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:32<00:10,  2.29it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:32<00:11,  2.12it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:33<00:10,  2.15it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:33<00:11,  1.95it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:34<00:10,  1.93it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:34<00:09,  2.07it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:35<00:09,  1.99it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:35<00:09,  1.98it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:36<00:07,  2.13it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:36<00:07,  2.16it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:37<00:07,  1.99it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:37<00:07,  1.97it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:38<00:06,  2.03it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:38<00:05,  2.14it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:39<00:05,  2.19it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:39<00:04,  2.16it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:39<00:04,  2.21it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:40<00:03,  2.28it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:40<00:03,  2.15it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:41<00:02,  2.23it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:41<00:02,  2.32it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:42<00:01,  2.20it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:42<00:01,  2.16it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:43<00:00,  2.06it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:43<00:00,  2.10it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:44<00:00,  2.18it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:44<00:00,  2.10it/s]
***** predict_test_nl_NL metrics *****
  predict_ex_match_acc         =     0.5928
  predict_ex_match_acc_stderr  =      0.009
  predict_intent_acc           =     0.8578
  predict_intent_acc_stderr    =     0.0064
  predict_loss                 =      0.473
  predict_runtime              = 0:00:44.89
  predict_samples              =       2974
  predict_samples_per_second   =     66.244
  predict_slot_micro_f1        =     0.6919
  predict_slot_micro_f1_stderr =     0.0032
  predict_steps_per_second     =      2.072
02/05/2024 18:52:57 - INFO - __main__ - *** test_pl_PL ***
[INFO|trainer.py:718] 2024-02-05 18:52:57,776 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:52:57,778 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:52:57,778 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:52:57,779 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:16,  5.55it/s]
  3%|β–Ž         | 3/93 [00:00<00:25,  3.51it/s]
  4%|▍         | 4/93 [00:01<00:30,  2.96it/s]
  5%|β–Œ         | 5/93 [00:01<00:31,  2.75it/s]
  6%|β–‹         | 6/93 [00:02<00:32,  2.70it/s]
  8%|β–Š         | 7/93 [00:02<00:33,  2.57it/s]
  9%|β–Š         | 8/93 [00:03<00:37,  2.24it/s]
 10%|β–‰         | 9/93 [00:03<00:39,  2.12it/s]
 11%|β–ˆ         | 10/93 [00:03<00:37,  2.22it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:37,  2.16it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:34,  2.34it/s]
 14%|β–ˆβ–        | 13/93 [00:05<00:33,  2.37it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:32,  2.47it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:32,  2.38it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:32,  2.37it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:32,  2.37it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:31,  2.36it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:31,  2.32it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:33,  2.17it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:32,  2.23it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:09<00:30,  2.35it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:29,  2.39it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:28,  2.45it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:27,  2.50it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:26,  2.52it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:11<00:26,  2.53it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:11<00:26,  2.43it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:11<00:27,  2.32it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:12<00:26,  2.41it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:12<00:25,  2.42it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:13<00:24,  2.47it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:13<00:24,  2.44it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:13<00:22,  2.59it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:14<00:23,  2.49it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:14<00:25,  2.27it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:15<00:26,  2.14it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:15<00:25,  2.17it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:16<00:24,  2.23it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:16<00:24,  2.15it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:49,  1.05it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:19<00:41,  1.23it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:33,  1.50it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:19<00:28,  1.73it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:20<00:26,  1.82it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:20<00:24,  1.93it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:21<00:21,  2.12it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:20,  2.22it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:22<00:19,  2.22it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:18,  2.28it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:22<00:18,  2.30it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:23<00:17,  2.37it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:23<00:17,  2.35it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:24<00:16,  2.44it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:24<00:15,  2.47it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:25<00:16,  2.29it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:25<00:15,  2.30it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:25<00:14,  2.35it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:26<00:14,  2.42it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:13,  2.37it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:27<00:14,  2.26it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:13,  2.27it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:28<00:12,  2.36it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:28<00:11,  2.50it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:11,  2.35it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:29<00:12,  2.19it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:11,  2.26it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:30<00:10,  2.34it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:30<00:10,  2.26it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:32<00:21,  1.08it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:33<00:17,  1.26it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:33<00:14,  1.45it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:34<00:11,  1.67it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:34<00:09,  1.91it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:34<00:08,  2.08it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:35<00:08,  2.09it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:35<00:08,  1.93it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:36<00:07,  2.07it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:36<00:06,  2.12it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:37<00:06,  2.14it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:37<00:05,  2.01it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:38<00:05,  2.13it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:38<00:04,  2.24it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:38<00:03,  2.46it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:39<00:03,  2.38it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:39<00:02,  2.35it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:40<00:02,  2.27it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:40<00:02,  2.31it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:41<00:01,  2.40it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:41<00:01,  2.23it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:42<00:00,  2.16it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:42<00:00,  2.15it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:42<00:00,  2.29it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:43<00:00,  2.16it/s]
***** predict_test_pl_PL metrics *****
  predict_ex_match_acc         =     0.5128
  predict_ex_match_acc_stderr  =     0.0092
  predict_intent_acc           =     0.7993
  predict_intent_acc_stderr    =     0.0073
  predict_loss                 =     0.3891
  predict_runtime              = 0:00:43.56
  predict_samples              =       2974
  predict_samples_per_second   =     68.259
  predict_slot_micro_f1        =     0.6636
  predict_slot_micro_f1_stderr =     0.0036
  predict_steps_per_second     =      2.135
02/05/2024 18:53:41 - INFO - __main__ - *** test_pt_PT ***
[INFO|trainer.py:718] 2024-02-05 18:53:41,587 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:53:41,590 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:53:41,590 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:53:41,590 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:18,  4.89it/s]
  3%|β–Ž         | 3/93 [00:00<00:31,  2.88it/s]
  4%|▍         | 4/93 [00:01<00:33,  2.69it/s]
  5%|β–Œ         | 5/93 [00:01<00:35,  2.50it/s]
  6%|β–‹         | 6/93 [00:02<00:41,  2.09it/s]
  8%|β–Š         | 7/93 [00:03<00:44,  1.94it/s]
  9%|β–Š         | 8/93 [00:03<00:43,  1.95it/s]
 10%|β–‰         | 9/93 [00:04<00:42,  2.00it/s]
 11%|β–ˆ         | 10/93 [00:04<00:41,  2.01it/s]
 12%|β–ˆβ–        | 11/93 [00:05<00:44,  1.85it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:05<00:40,  2.01it/s]
 14%|β–ˆβ–        | 13/93 [00:06<00:39,  2.02it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:06<00:36,  2.16it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:06<00:37,  2.08it/s]
 17%|β–ˆβ–‹        | 16/93 [00:07<00:37,  2.04it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:36,  2.11it/s]
 19%|β–ˆβ–‰        | 18/93 [00:08<00:34,  2.18it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:08<00:35,  2.11it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:09<00:36,  2.01it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:09<00:34,  2.08it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:10<00:32,  2.18it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:10<00:31,  2.19it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:11<00:31,  2.19it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:11<00:31,  2.19it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:11<00:29,  2.29it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:12<00:33,  1.99it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:13<00:34,  1.91it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:32,  1.99it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:14<00:29,  2.16it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:27,  2.24it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:27,  2.22it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:29,  2.03it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:16<00:30,  1.93it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:18<00:57,  1.00it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:18<00:48,  1.17it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:19<00:40,  1.37it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:19<00:35,  1.53it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:20<00:32,  1.68it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:20<00:30,  1.74it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:21<00:28,  1.81it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:21<00:27,  1.83it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:22<00:26,  1.91it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:22<00:26,  1.86it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:23<00:26,  1.84it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:23<00:26,  1.79it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:24<00:23,  1.96it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:24<00:21,  2.05it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:25<00:21,  2.07it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:25<00:20,  2.07it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:26<00:20,  2.04it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:26<00:24,  1.70it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:27<00:25,  1.60it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:28<00:23,  1.66it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:28<00:20,  1.84it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:29<00:19,  1.89it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:29<00:18,  1.97it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:30<00:17,  1.96it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:30<00:16,  2.09it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:30<00:15,  2.16it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:31<00:16,  1.94it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:32<00:15,  1.97it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:32<00:16,  1.86it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:33<00:14,  1.94it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:33<00:13,  2.04it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:34<00:12,  2.10it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:34<00:12,  2.07it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:34<00:11,  2.08it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:35<00:11,  2.14it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:35<00:10,  2.12it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:36<00:10,  2.15it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:36<00:09,  2.24it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:37<00:08,  2.26it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:37<00:08,  2.22it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:38<00:07,  2.31it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:38<00:07,  2.17it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:39<00:07,  2.15it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:39<00:07,  1.99it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:40<00:06,  2.00it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:40<00:06,  2.05it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:41<00:05,  2.13it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:41<00:05,  1.97it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:42<00:04,  2.05it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:42<00:04,  2.12it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:42<00:03,  2.23it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:43<00:02,  2.38it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:43<00:02,  2.28it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:44<00:02,  2.24it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:44<00:01,  2.21it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:45<00:01,  2.05it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:45<00:00,  2.07it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:46<00:00,  2.06it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:46<00:00,  2.19it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:46<00:00,  1.98it/s]
***** predict_test_pt_PT metrics *****
  predict_ex_match_acc         =      0.498
  predict_ex_match_acc_stderr  =     0.0092
  predict_intent_acc           =     0.8268
  predict_intent_acc_stderr    =     0.0069
  predict_loss                 =     0.5365
  predict_runtime              = 0:00:47.52
  predict_samples              =       2974
  predict_samples_per_second   =     62.577
  predict_slot_micro_f1        =     0.5705
  predict_slot_micro_f1_stderr =     0.0034
  predict_steps_per_second     =      1.957
02/05/2024 18:54:29 - INFO - __main__ - *** test_ru_RU ***
[INFO|trainer.py:718] 2024-02-05 18:54:29,364 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:54:29,366 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:54:29,367 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:54:29,367 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:17,  5.16it/s]
  3%|β–Ž         | 3/93 [00:00<00:25,  3.55it/s]
  4%|▍         | 4/93 [00:01<00:32,  2.77it/s]
  5%|β–Œ         | 5/93 [00:01<00:31,  2.76it/s]
  6%|β–‹         | 6/93 [00:01<00:30,  2.81it/s]
  8%|β–Š         | 7/93 [00:02<00:34,  2.46it/s]
  9%|β–Š         | 8/93 [00:02<00:33,  2.52it/s]
 10%|β–‰         | 9/93 [00:03<00:32,  2.60it/s]
 11%|β–ˆ         | 10/93 [00:03<00:31,  2.62it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:33,  2.42it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:33,  2.38it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:31,  2.51it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:31,  2.53it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:34,  2.29it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:36,  2.10it/s]
 18%|β–ˆβ–Š        | 17/93 [00:06<00:37,  2.04it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:35,  2.14it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:32,  2.27it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:31,  2.33it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:29,  2.48it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:08<00:28,  2.52it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:29,  2.36it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:09<00:28,  2.44it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:30,  2.26it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:28,  2.33it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:11<00:29,  2.24it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:13<01:01,  1.06it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:49,  1.30it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:13<00:41,  1.51it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:36,  1.70it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:15<00:37,  1.61it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:33,  1.79it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:31,  1.86it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:16<00:30,  1.92it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:27,  2.06it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:17<00:27,  2.02it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:17<00:27,  1.97it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:18<00:27,  1.97it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:18<00:25,  2.11it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:19<00:23,  2.20it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:19<00:21,  2.36it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:19,  2.52it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:20<00:19,  2.55it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:20<00:19,  2.51it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:21<00:19,  2.46it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:21<00:17,  2.57it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:22<00:19,  2.25it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:22<00:18,  2.41it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:18,  2.28it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:23<00:19,  2.11it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:24<00:21,  1.95it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:24<00:18,  2.11it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:24<00:18,  2.16it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:25<00:16,  2.32it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:25<00:15,  2.33it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:26<00:15,  2.38it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:26<00:15,  2.29it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:26<00:14,  2.33it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:27<00:13,  2.44it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:27<00:13,  2.33it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:28<00:13,  2.36it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:28<00:12,  2.44it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:28<00:11,  2.42it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:29<00:11,  2.47it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:29<00:11,  2.44it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:30<00:10,  2.39it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:30<00:10,  2.29it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:31<00:10,  2.21it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:31<00:10,  2.19it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:32<00:10,  2.06it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:32<00:09,  2.18it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:32<00:08,  2.33it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:33<00:08,  2.30it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:33<00:08,  2.25it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:34<00:07,  2.20it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:34<00:07,  2.15it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:35<00:07,  2.01it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:35<00:07,  1.98it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:36<00:06,  1.99it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:36<00:05,  2.17it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:37<00:04,  2.26it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:37<00:04,  2.23it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:38<00:03,  2.32it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:38<00:03,  2.34it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:38<00:03,  2.24it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:39<00:02,  2.25it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:39<00:02,  2.29it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:40<00:01,  2.29it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:40<00:01,  2.30it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:41<00:00,  2.11it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:41<00:00,  2.14it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:42<00:00,  2.31it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:42<00:00,  2.20it/s]
***** predict_test_ru_RU metrics *****
  predict_ex_match_acc         =     0.6113
  predict_ex_match_acc_stderr  =     0.0089
  predict_intent_acc           =     0.8557
  predict_intent_acc_stderr    =     0.0064
  predict_loss                 =     0.3015
  predict_runtime              = 0:00:42.75
  predict_samples              =       2974
  predict_samples_per_second   =     69.553
  predict_slot_micro_f1        =     0.7306
  predict_slot_micro_f1_stderr =     0.0034
  predict_steps_per_second     =      2.175
02/05/2024 18:55:12 - INFO - __main__ - *** test_tr_TR ***
[INFO|trainer.py:718] 2024-02-05 18:55:12,367 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:55:12,369 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:55:12,370 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:55:12,370 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:18,  4.93it/s]
  3%|β–Ž         | 3/93 [00:00<00:27,  3.31it/s]
  4%|▍         | 4/93 [00:01<00:30,  2.93it/s]
  5%|β–Œ         | 5/93 [00:01<00:32,  2.74it/s]
  6%|β–‹         | 6/93 [00:01<00:30,  2.84it/s]
  8%|β–Š         | 7/93 [00:02<00:33,  2.57it/s]
  9%|β–Š         | 8/93 [00:02<00:31,  2.67it/s]
 10%|β–‰         | 9/93 [00:03<00:35,  2.35it/s]
 11%|β–ˆ         | 10/93 [00:03<00:34,  2.41it/s]
 12%|β–ˆβ–        | 11/93 [00:04<00:35,  2.32it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:04<00:33,  2.42it/s]
 14%|β–ˆβ–        | 13/93 [00:04<00:31,  2.50it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:05<00:32,  2.46it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:05<00:35,  2.23it/s]
 17%|β–ˆβ–‹        | 16/93 [00:06<00:38,  2.02it/s]
 18%|β–ˆβ–Š        | 17/93 [00:07<00:38,  1.95it/s]
 19%|β–ˆβ–‰        | 18/93 [00:07<00:38,  1.94it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:07<00:34,  2.16it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:08<00:31,  2.28it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:08<00:31,  2.31it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:09<00:34,  2.05it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:09<00:33,  2.10it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:10<00:30,  2.28it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:10<00:29,  2.32it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:10<00:27,  2.45it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:11<00:26,  2.49it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:13<00:58,  1.12it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:13<00:47,  1.34it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:14<00:40,  1.54it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:14<00:34,  1.81it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:14<00:31,  1.94it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:15<00:28,  2.08it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:15<00:25,  2.28it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:16<00:25,  2.26it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:16<00:24,  2.31it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:16<00:24,  2.27it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:17<00:25,  2.12it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:17<00:24,  2.17it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:18<00:23,  2.27it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:18<00:22,  2.34it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:19<00:21,  2.33it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:19<00:20,  2.40it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:20<00:20,  2.37it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:20<00:21,  2.27it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:21<00:22,  2.13it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:21<00:19,  2.31it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:21<00:19,  2.35it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:22<00:18,  2.38it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:22<00:17,  2.51it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:22<00:17,  2.44it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:23<00:18,  2.18it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:24<00:18,  2.18it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:24<00:17,  2.26it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:24<00:15,  2.40it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:25<00:14,  2.50it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:25<00:14,  2.47it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:25<00:13,  2.52it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:26<00:12,  2.64it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:26<00:13,  2.47it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:27<00:14,  2.18it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:27<00:13,  2.25it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:28<00:12,  2.36it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:28<00:12,  2.39it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:28<00:11,  2.44it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:29<00:11,  2.42it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:29<00:10,  2.44it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:30<00:10,  2.30it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:30<00:11,  2.17it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:31<00:10,  2.24it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:31<00:10,  2.02it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:32<00:09,  2.18it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:32<00:08,  2.26it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:32<00:08,  2.25it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:33<00:08,  2.21it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:33<00:07,  2.23it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:34<00:06,  2.37it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:34<00:06,  2.46it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:35<00:05,  2.37it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:35<00:05,  2.24it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:35<00:05,  2.35it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:36<00:04,  2.35it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:36<00:04,  2.21it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:37<00:03,  2.26it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:37<00:03,  2.31it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:38<00:02,  2.34it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:38<00:02,  2.44it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:38<00:02,  2.48it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:39<00:01,  2.35it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:39<00:01,  2.36it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [00:40<00:00,  2.23it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [00:40<00:00,  2.23it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.43it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:41<00:00,  2.25it/s]
***** predict_test_tr_TR metrics *****
  predict_ex_match_acc         =     0.4445
  predict_ex_match_acc_stderr  =     0.0091
  predict_intent_acc           =     0.7579
  predict_intent_acc_stderr    =     0.0079
  predict_loss                 =      0.614
  predict_runtime              = 0:00:41.70
  predict_samples              =       2974
  predict_samples_per_second   =      71.31
  predict_slot_micro_f1        =     0.6036
  predict_slot_micro_f1_stderr =     0.0038
  predict_steps_per_second     =       2.23
02/05/2024 18:55:54 - INFO - __main__ - *** test_vi_VN ***
[INFO|trainer.py:718] 2024-02-05 18:55:54,298 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, id, annot_utt. If intent_str, id, annot_utt are not expected by `MT5ForConditionalGeneration.forward`,  you can safely ignore this message.
[INFO|trainer.py:3199] 2024-02-05 18:55:54,300 >> ***** Running Prediction *****
[INFO|trainer.py:3201] 2024-02-05 18:55:54,300 >>   Num examples = 2974
[INFO|trainer.py:3204] 2024-02-05 18:55:54,301 >>   Batch size = 32

  0%|          | 0/93 [00:00<?, ?it/s]
  2%|▏         | 2/93 [00:00<00:21,  4.28it/s]
  3%|β–Ž         | 3/93 [00:00<00:27,  3.22it/s]
  4%|▍         | 4/93 [00:01<00:36,  2.45it/s]
  5%|β–Œ         | 5/93 [00:02<00:40,  2.15it/s]
  6%|β–‹         | 6/93 [00:02<00:40,  2.12it/s]
  8%|β–Š         | 7/93 [00:03<00:42,  2.03it/s]
  9%|β–Š         | 8/93 [00:03<00:43,  1.98it/s]
 10%|β–‰         | 9/93 [00:04<00:40,  2.08it/s]
 11%|β–ˆ         | 10/93 [00:04<00:43,  1.90it/s]
 12%|β–ˆβ–        | 11/93 [00:05<00:43,  1.89it/s]
 13%|β–ˆβ–Ž        | 12/93 [00:05<00:43,  1.84it/s]
 14%|β–ˆβ–        | 13/93 [00:06<00:46,  1.71it/s]
 15%|β–ˆβ–Œ        | 14/93 [00:07<00:45,  1.72it/s]
 16%|β–ˆβ–Œ        | 15/93 [00:07<00:48,  1.59it/s]
 17%|β–ˆβ–‹        | 16/93 [00:08<00:51,  1.49it/s]
 18%|β–ˆβ–Š        | 17/93 [00:09<00:49,  1.53it/s]
 19%|β–ˆβ–‰        | 18/93 [00:09<00:53,  1.41it/s]
 20%|β–ˆβ–ˆ        | 19/93 [00:10<00:48,  1.52it/s]
 22%|β–ˆβ–ˆβ–       | 20/93 [00:10<00:44,  1.64it/s]
 23%|β–ˆβ–ˆβ–Ž       | 21/93 [00:11<00:42,  1.70it/s]
 24%|β–ˆβ–ˆβ–Ž       | 22/93 [00:12<00:43,  1.62it/s]
 25%|β–ˆβ–ˆβ–       | 23/93 [00:12<00:42,  1.65it/s]
 26%|β–ˆβ–ˆβ–Œ       | 24/93 [00:13<00:39,  1.74it/s]
 27%|β–ˆβ–ˆβ–‹       | 25/93 [00:13<00:40,  1.68it/s]
 28%|β–ˆβ–ˆβ–Š       | 26/93 [00:14<00:38,  1.76it/s]
 29%|β–ˆβ–ˆβ–‰       | 27/93 [00:15<00:44,  1.47it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 28/93 [00:17<01:12,  1.12s/it]
 31%|β–ˆβ–ˆβ–ˆ       | 29/93 [00:17<00:58,  1.10it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 30/93 [00:18<00:54,  1.16it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 31/93 [00:19<00:46,  1.32it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 32/93 [00:19<00:43,  1.41it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 33/93 [00:20<00:40,  1.49it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 34/93 [00:20<00:37,  1.57it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 35/93 [00:21<00:35,  1.61it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 36/93 [00:22<00:38,  1.46it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 37/93 [00:22<00:36,  1.54it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 38/93 [00:23<00:35,  1.55it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 39/93 [00:25<00:57,  1.06s/it]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 40/93 [00:26<00:49,  1.07it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 41/93 [00:26<00:42,  1.21it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 42/93 [00:27<00:37,  1.34it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 43/93 [00:27<00:34,  1.44it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 44/93 [00:28<00:30,  1.63it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 45/93 [00:29<00:30,  1.58it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 46/93 [00:29<00:30,  1.54it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 47/93 [00:30<00:33,  1.39it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 48/93 [00:31<00:33,  1.32it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 49/93 [00:31<00:29,  1.49it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 50/93 [00:32<00:26,  1.62it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 51/93 [00:34<00:44,  1.05s/it]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 52/93 [00:35<00:39,  1.05it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 53/93 [00:35<00:32,  1.22it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 54/93 [00:36<00:29,  1.33it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 55/93 [00:36<00:26,  1.45it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 56/93 [00:37<00:22,  1.63it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 57/93 [00:37<00:20,  1.73it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 58/93 [00:38<00:21,  1.66it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 59/93 [00:39<00:22,  1.54it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 60/93 [00:39<00:19,  1.70it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 61/93 [00:40<00:19,  1.62it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 62/93 [00:40<00:19,  1.62it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 63/93 [00:41<00:20,  1.48it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 64/93 [00:42<00:17,  1.62it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 65/93 [00:42<00:17,  1.64it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 66/93 [00:43<00:17,  1.57it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 67/93 [00:44<00:15,  1.63it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 68/93 [00:44<00:14,  1.74it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 69/93 [00:45<00:14,  1.68it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 70/93 [00:45<00:12,  1.78it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 71/93 [00:47<00:21,  1.00it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 72/93 [00:48<00:18,  1.16it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 73/93 [00:48<00:15,  1.31it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 74/93 [00:49<00:13,  1.43it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 75/93 [00:51<00:19,  1.09s/it]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 76/93 [00:51<00:15,  1.09it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 77/93 [00:52<00:13,  1.21it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 78/93 [00:53<00:11,  1.34it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 79/93 [00:53<00:09,  1.45it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 80/93 [00:54<00:08,  1.51it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 81/93 [00:54<00:07,  1.55it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 82/93 [00:55<00:06,  1.66it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 83/93 [00:55<00:05,  1.71it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 84/93 [00:56<00:04,  1.81it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 85/93 [00:57<00:04,  1.65it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 86/93 [00:57<00:04,  1.62it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 87/93 [00:58<00:03,  1.72it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 88/93 [00:58<00:02,  1.81it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 89/93 [00:59<00:02,  1.80it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 90/93 [00:59<00:01,  1.83it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 91/93 [01:00<00:01,  1.70it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 92/93 [01:00<00:00,  1.76it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [01:01<00:00,  1.79it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [01:01<00:00,  1.50it/s]
***** predict_test_vi_VN metrics *****
  predict_ex_match_acc         =     0.1416
  predict_ex_match_acc_stderr  =     0.0064
  predict_intent_acc           =     0.3584
  predict_intent_acc_stderr    =     0.0088
  predict_loss                 =     0.6596
  predict_runtime              = 0:01:02.37
  predict_samples              =       2974
  predict_samples_per_second   =     47.683
  predict_slot_micro_f1        =     0.3368
  predict_slot_micro_f1_stderr =     0.0029
  predict_steps_per_second     =      1.491