BenjaminOcampo commited on
Commit
67c78a3
·
verified ·
1 Parent(s): 679de17

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +116 -0
README.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BenjaminOcampo/model-contrastive-hatebert__trained-in-ishate__seed-0
3
+ datasets:
4
+ - ISHate
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ license: bsl-1.0
9
+ metrics:
10
+ - f1
11
+ - accuracy
12
+ tags:
13
+ - hate-speech-detection
14
+ - implicit-hate-speech
15
+ ---
16
+
17
+ This model card documents the demo paper "PEACE: Providing Explanations and
18
+ Analysis for Combating Hate Expressions" accepted at the 27th European
19
+ Conference on Artificial Intelligence: https://www.ecai2024.eu/calls/demos.
20
+
21
+ # The Model
22
+ This model is a hate speech detector fine-tuned specifically for detecting
23
+ implicit hate speech. It is based on the paper "PEACE: Providing Explanations
24
+ and Analysis for Combating Hate Expressions" by Greta Damo, Nicolás Benjamín
25
+ Ocampo, Elena Cabrio, and Serena Villata, presented at the 27th European
26
+ Conference on Artificial Intelligence.
27
+
28
+ # Training Parameters and Experimental Info
29
+ The model was trained using the ISHate dataset, focusing on implicit data.
30
+ Training parameters included:
31
+ - Batch size: 32
32
+ - Weight decay: 0.01
33
+ - Epochs: 4
34
+ - Learning rate: 2e-5
35
+
36
+ For detailed information on the training process, please refer to the [model's
37
+ paper](https://aclanthology.org/2023.findings-emnlp.441/).
38
+
39
+ # Usage
40
+
41
+ First you might need the transformers version 4.30.2.
42
+
43
+ ```
44
+ pip install transformers==4.30.2
45
+ ```
46
+
47
+ This model was created using pytorch vanilla. In order to load it you have to use the following Model Class.
48
+
49
+ ```python
50
+ class ContrastiveModel(nn.Module):
51
+ def __init__(self, model):
52
+ super(ContrastiveModel, self).__init__()
53
+ self.model = model
54
+ self.embedding_dim = model.config.hidden_size
55
+ self.fc = nn.Linear(self.embedding_dim, self.embedding_dim)
56
+ self.classifier = nn.Linear(self.embedding_dim, 2) # Classification layer
57
+
58
+ def forward(self, input_ids, attention_mask):
59
+ outputs = self.model(input_ids, attention_mask)
60
+ embeddings = outputs.last_hidden_state[:, 0] # Use the CLS token embedding as the representation
61
+ embeddings = self.fc(embeddings)
62
+ logits = self.classifier(embeddings) # Apply classification layer
63
+
64
+ return embeddings, logits
65
+ ```
66
+
67
+ Then, we instantiate the model as:
68
+
69
+ ```python
70
+ from transformers import AutoModel, AutoTokenizer, AutoConfig
71
+
72
+ repo_name = "BenjaminOcampo/peace_cont_hatebert"
73
+
74
+ config = AutoConfig.from_pretrained(repo_name)
75
+ contrastive_model = ContrastiveModel(AutoModel.from_config(config))
76
+ tokenizer = AutoTokenizer.from_pretrained(repo_name)
77
+ ```
78
+
79
+ Finally, to load the weights of the model we do as follows:
80
+
81
+ ```python
82
+ model_tmp_file = hf_hub_download(repo_id=repo_name, filename="model.pt", token=read_token)
83
+
84
+ state_dict = torch.load(model_tmp_file)
85
+
86
+ contrastive_model.load_state_dict(state_dict)
87
+ ```
88
+
89
+ You can make predictions as any pytorch model:
90
+
91
+ ```
92
+ import torch
93
+
94
+ text = "Are you sure that Islam is a peaceful religion?"
95
+ inputs = tokenizer(text, return_tensors="pt")
96
+
97
+ with torch.no_grad():
98
+ _, logits = contrastive_model(inputs["input_ids"], inputs["attention_mask"])
99
+
100
+ probabilities = torch.softmax(logits, dim=1)
101
+ _, predicted_labels = torch.max(probabilities, dim=1)
102
+ ```
103
+
104
+ # Datasets
105
+ The model was trained on the [ISHate dataset](https://huggingface.co/datasets/BenjaminOcampo/ISHate), specifically
106
+ the training part of the dataset which focuses on implicit hate speech.
107
+
108
+ # Evaluation Results
109
+ The model's performance was evaluated using standard metrics, including F1 score
110
+ and accuracy. For comprehensive evaluation results, refer to the linked paper.
111
+
112
+ Authors:
113
+ - [Greta Damo](https://grexit-d.github.io/damo.greta.github.io/)
114
+ - [Nicolás Benjamín Ocampo](https://www.nicolasbenjaminocampo.com/)
115
+ - [Elena Cabrio](https://www-sop.inria.fr/members/Elena.Cabrio/)
116
+ - [Serena Villata](https://webusers.i3s.unice.fr/~villata/Home.html)