BenjaminOcampo
commited on
Add model's weights
Browse files- README.md +179 -85
- config.json +28 -0
- model.pt +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,116 +1,210 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
datasets:
|
4 |
-
- ISHate
|
5 |
-
language:
|
6 |
-
- en
|
7 |
-
library_name: transformers
|
8 |
-
license: bsl-1.0
|
9 |
-
metrics:
|
10 |
-
- f1
|
11 |
-
- accuracy
|
12 |
-
tags:
|
13 |
-
- hate-speech-detection
|
14 |
-
- implicit-hate-speech
|
15 |
---
|
16 |
|
17 |
-
|
18 |
-
Analysis for Combating Hate Expressions" accepted at the 27th European
|
19 |
-
Conference on Artificial Intelligence: https://www.ecai2024.eu/calls/demos.
|
20 |
|
21 |
-
|
22 |
-
This model is a hate speech detector fine-tuned specifically for detecting
|
23 |
-
implicit hate speech. It is based on the paper "PEACE: Providing Explanations
|
24 |
-
and Analysis for Combating Hate Expressions" by Greta Damo, Nicolás Benjamín
|
25 |
-
Ocampo, Elena Cabrio, and Serena Villata, presented at the 27th European
|
26 |
-
Conference on Artificial Intelligence.
|
27 |
|
28 |
-
# Training Parameters and Experimental Info
|
29 |
-
The model was trained using the ISHate dataset, focusing on implicit data.
|
30 |
-
Training parameters included:
|
31 |
-
- Batch size: 32
|
32 |
-
- Weight decay: 0.01
|
33 |
-
- Epochs: 4
|
34 |
-
- Learning rate: 2e-5
|
35 |
|
36 |
-
For detailed information on the training process, please refer to the [model's
|
37 |
-
paper](https://aclanthology.org/2023.findings-emnlp.441/).
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
42 |
|
|
|
|
|
|
|
43 |
```
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
```
|
46 |
|
47 |
-
This model was created using pytorch vanilla. In order to load it you have to use the following Model Class.
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
self.fc = nn.Linear(self.embedding_dim, self.embedding_dim)
|
56 |
-
self.classifier = nn.Linear(self.embedding_dim, 2) # Classification layer
|
57 |
|
58 |
-
|
59 |
-
outputs = self.model(input_ids, attention_mask)
|
60 |
-
embeddings = outputs.last_hidden_state[:, 0] # Use the CLS token embedding as the representation
|
61 |
-
embeddings = self.fc(embeddings)
|
62 |
-
logits = self.classifier(embeddings) # Apply classification layer
|
63 |
|
64 |
-
|
65 |
-
```
|
66 |
|
67 |
-
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
from transformers import AutoModel, AutoTokenizer, AutoConfig
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
contrastive_model = ContrastiveModel(AutoModel.from_config(config))
|
76 |
-
tokenizer = AutoTokenizer.from_pretrained(repo_name)
|
77 |
-
```
|
78 |
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
model_tmp_file = hf_hub_download(repo_id=repo_name, filename="model.pt", token=read_token)
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
```
|
88 |
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
import torch
|
93 |
|
94 |
-
|
95 |
-
inputs = tokenizer(text, return_tensors="pt")
|
96 |
|
97 |
-
|
98 |
-
_, logits = contrastive_model(inputs["input_ids"], inputs["attention_mask"])
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
The model was trained on the [ISHate dataset](https://huggingface.co/datasets/BenjaminOcampo/ISHate), specifically
|
106 |
-
the training part of the dataset which focuses on implicit hate speech.
|
107 |
|
108 |
-
# Evaluation Results
|
109 |
-
The model's performance was evaluated using standard metrics, including F1 score
|
110 |
-
and accuracy. For comprehensive evaluation results, refer to the linked paper.
|
111 |
|
112 |
-
Authors:
|
113 |
-
- [Greta Damo](https://grexit-d.github.io/damo.greta.github.io/)
|
114 |
-
- [Nicolás Benjamín Ocampo](https://www.nicolasbenjaminocampo.com/)
|
115 |
-
- [Elena Cabrio](https://www-sop.inria.fr/members/Elena.Cabrio/)
|
116 |
-
- [Serena Villata](https://webusers.i3s.unice.fr/~villata/Home.html)
|
|
|
1 |
---
|
2 |
+
language: en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
+
# Model Card for BenjaminOcampo/model-contrastive-hatebert__trained-in-ishate__seed-0
|
|
|
|
|
6 |
|
7 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
10 |
|
11 |
+
## Model Details
|
12 |
|
13 |
+
### Model Description
|
14 |
|
15 |
+
<!-- Provide a longer summary of what this model is. -->
|
16 |
+
|
17 |
+
**Classification results test set**
|
18 |
```
|
19 |
+
precision recall f1-score support
|
20 |
+
|
21 |
+
Non-HS 0.9139 0.8351 0.8727 2681
|
22 |
+
HS 0.7696 0.8749 0.8189 1687
|
23 |
+
|
24 |
+
accuracy 0.8505 4368
|
25 |
+
macro avg 0.8417 0.8550 0.8458 4368
|
26 |
+
weighted avg 0.8581 0.8505 0.8519 4368
|
27 |
```
|
28 |
|
|
|
29 |
|
30 |
+
- **Developed by:** Benjamin Ocampo
|
31 |
+
- **Shared by [optional]:** [More Information Needed]
|
32 |
+
- **Model type:** [More Information Needed]
|
33 |
+
- **Language(s) (NLP):** en
|
34 |
+
- **License:** [More Information Needed]
|
35 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
|
|
|
|
36 |
|
37 |
+
### Model Sources [optional]
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
<!-- Provide the basic links for the model. -->
|
|
|
40 |
|
41 |
+
- **Repository:** https://github.com/huggingface/huggingface_hub
|
42 |
+
- **Paper [optional]:** [More Information Needed]
|
43 |
+
- **Demo [optional]:** [More Information Needed]
|
44 |
|
45 |
+
## Uses
|
|
|
46 |
|
47 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
48 |
|
49 |
+
### Direct Use
|
|
|
|
|
|
|
50 |
|
51 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
52 |
|
53 |
+
[More Information Needed]
|
|
|
54 |
|
55 |
+
### Downstream Use [optional]
|
56 |
|
57 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
|
|
58 |
|
59 |
+
[More Information Needed]
|
60 |
|
61 |
+
### Out-of-Scope Use
|
|
|
62 |
|
63 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
|
|
64 |
|
65 |
+
[More Information Needed]
|
|
|
66 |
|
67 |
+
## Bias, Risks, and Limitations
|
68 |
+
|
69 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
70 |
+
|
71 |
+
[More Information Needed]
|
72 |
+
|
73 |
+
### Recommendations
|
74 |
+
|
75 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
76 |
+
|
77 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
78 |
+
|
79 |
+
## How to Get Started with the Model
|
80 |
+
|
81 |
+
Use the code below to get started with the model.
|
82 |
+
|
83 |
+
[More Information Needed]
|
84 |
+
|
85 |
+
## Training Details
|
86 |
+
|
87 |
+
### Training Data
|
88 |
+
|
89 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
90 |
+
|
91 |
+
[More Information Needed]
|
92 |
+
|
93 |
+
### Training Procedure
|
94 |
+
|
95 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
96 |
+
|
97 |
+
#### Preprocessing [optional]
|
98 |
+
|
99 |
+
[More Information Needed]
|
100 |
+
|
101 |
+
|
102 |
+
#### Training Hyperparameters
|
103 |
+
|
104 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
105 |
+
|
106 |
+
#### Speeds, Sizes, Times [optional]
|
107 |
+
|
108 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
109 |
+
|
110 |
+
[More Information Needed]
|
111 |
+
|
112 |
+
## Evaluation
|
113 |
+
|
114 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
115 |
+
|
116 |
+
### Testing Data, Factors & Metrics
|
117 |
+
|
118 |
+
#### Testing Data
|
119 |
+
|
120 |
+
<!-- This should link to a Data Card if possible. -->
|
121 |
+
|
122 |
+
[More Information Needed]
|
123 |
+
|
124 |
+
#### Factors
|
125 |
+
|
126 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Metrics
|
131 |
+
|
132 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
133 |
+
|
134 |
+
[More Information Needed]
|
135 |
+
|
136 |
+
### Results
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
#### Summary
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
## Model Examination [optional]
|
145 |
+
|
146 |
+
<!-- Relevant interpretability work for the model goes here -->
|
147 |
+
|
148 |
+
[More Information Needed]
|
149 |
+
|
150 |
+
## Environmental Impact
|
151 |
+
|
152 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
153 |
+
|
154 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
155 |
+
|
156 |
+
- **Hardware Type:** [More Information Needed]
|
157 |
+
- **Hours used:** [More Information Needed]
|
158 |
+
- **Cloud Provider:** [More Information Needed]
|
159 |
+
- **Compute Region:** [More Information Needed]
|
160 |
+
- **Carbon Emitted:** [More Information Needed]
|
161 |
+
|
162 |
+
## Technical Specifications [optional]
|
163 |
+
|
164 |
+
### Model Architecture and Objective
|
165 |
+
|
166 |
+
[More Information Needed]
|
167 |
+
|
168 |
+
### Compute Infrastructure
|
169 |
+
|
170 |
+
[More Information Needed]
|
171 |
+
|
172 |
+
#### Hardware
|
173 |
+
|
174 |
+
[More Information Needed]
|
175 |
+
|
176 |
+
#### Software
|
177 |
+
|
178 |
+
[More Information Needed]
|
179 |
+
|
180 |
+
## Citation [optional]
|
181 |
+
|
182 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
183 |
+
|
184 |
+
**BibTeX:**
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
**APA:**
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Glossary [optional]
|
193 |
+
|
194 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
195 |
+
|
196 |
+
[More Information Needed]
|
197 |
+
|
198 |
+
## More Information [optional]
|
199 |
+
|
200 |
+
[More Information Needed]
|
201 |
+
|
202 |
+
## Model Card Authors [optional]
|
203 |
+
|
204 |
+
[More Information Needed]
|
205 |
+
|
206 |
+
## Model Card Contact
|
207 |
|
208 |
+
[More Information Needed]
|
|
|
|
|
209 |
|
|
|
|
|
|
|
210 |
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BenjaminOcampo/model-hatebert__trained-in-ishate__seed-0",
|
3 |
+
"_num_labels": 2,
|
4 |
+
"architectures": [
|
5 |
+
"BertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"problem_type": "single_label_classification",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.27.4",
|
25 |
+
"type_vocab_size": 2,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 30522
|
28 |
+
}
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ab1235605b6535716e7350c287f2c155751dc18fd6c4fa6f23e5202f0ad42f0
|
3 |
+
size 440370701
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"max_len": 512,
|
7 |
+
"model_max_length": 512,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"special_tokens_map_file": "/home/nocampo/.cache/huggingface/hub/models--GroNLP--hateBERT/snapshots/f56d507e4b6a64413aff29e541e1b2178ee79d67/special_tokens_map.json",
|
12 |
+
"strip_accents": null,
|
13 |
+
"tokenize_chinese_chars": true,
|
14 |
+
"tokenizer_class": "BertTokenizer",
|
15 |
+
"unk_token": "[UNK]"
|
16 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|