BenjaminKUL commited on
Commit
6469242
·
1 Parent(s): bc5189e

End of training

Browse files
README.md CHANGED
@@ -14,14 +14,14 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.0292
18
- - Answer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10}
19
- - Header: {'precision': 0.07692307692307693, 'recall': 0.058823529411764705, 'f1': 0.06666666666666667, 'number': 17}
20
- - Question: {'precision': 0.0625, 'recall': 0.058823529411764705, 'f1': 0.06060606060606061, 'number': 17}
21
- - Overall Precision: 0.0556
22
- - Overall Recall: 0.0455
23
- - Overall F1: 0.0500
24
- - Overall Accuracy: 0.6578
25
 
26
  ## Model description
27
 
@@ -50,20 +50,20 @@ The following hyperparameters were used during training:
50
 
51
  ### Training results
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
- |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
- | 0.1533 | 3.92 | 200 | 0.0173 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | 0.0 | 0.0 | 0.0 | 0.5989 |
56
- | 0.0443 | 7.84 | 400 | 0.0137 | {'precision': 0.09090909090909091, 'recall': 0.1, 'f1': 0.09523809523809525, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | 0.0164 | 0.0227 | 0.0190 | 0.6203 |
57
- | 0.0194 | 11.76 | 600 | 0.0162 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.2222222222222222, 'recall': 0.11764705882352941, 'f1': 0.15384615384615383, 'number': 17} | {'precision': 0.07142857142857142, 'recall': 0.058823529411764705, 'f1': 0.06451612903225808, 'number': 17} | 0.1154 | 0.0682 | 0.0857 | 0.6417 |
58
- | 0.0089 | 15.69 | 800 | 0.0186 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.06666666666666667, 'recall': 0.058823529411764705, 'f1': 0.0625, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | 0.0278 | 0.0227 | 0.0250 | 0.6684 |
59
- | 0.0036 | 19.61 | 1000 | 0.0264 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.07692307692307693, 'recall': 0.058823529411764705, 'f1': 0.06666666666666667, 'number': 17} | {'precision': 0.0625, 'recall': 0.058823529411764705, 'f1': 0.06060606060606061, 'number': 17} | 0.0556 | 0.0455 | 0.0500 | 0.6578 |
60
- | 0.0031 | 23.53 | 1200 | 0.0200 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.1111111111111111, 'recall': 0.11764705882352941, 'f1': 0.11428571428571428, 'number': 17} | {'precision': 0.05263157894736842, 'recall': 0.058823529411764705, 'f1': 0.05555555555555555, 'number': 17} | 0.0732 | 0.0682 | 0.0706 | 0.6791 |
61
- | 0.0015 | 27.45 | 1400 | 0.0222 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.05, 'recall': 0.058823529411764705, 'f1': 0.05405405405405405, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | 0.0196 | 0.0227 | 0.0211 | 0.6631 |
62
- | 0.0011 | 31.37 | 1600 | 0.0249 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} | {'precision': 0.045454545454545456, 'recall': 0.058823529411764705, 'f1': 0.05128205128205128, 'number': 17} | 0.0408 | 0.0455 | 0.0430 | 0.6845 |
63
- | 0.0006 | 35.29 | 1800 | 0.0243 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | 0.0213 | 0.0227 | 0.0220 | 0.6952 |
64
- | 0.0004 | 39.22 | 2000 | 0.0290 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.07142857142857142, 'recall': 0.058823529411764705, 'f1': 0.06451612903225808, 'number': 17} | {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} | 0.0488 | 0.0455 | 0.0471 | 0.6578 |
65
- | 0.0002 | 43.14 | 2200 | 0.0288 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.07142857142857142, 'recall': 0.058823529411764705, 'f1': 0.06451612903225808, 'number': 17} | {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} | 0.0488 | 0.0455 | 0.0471 | 0.6578 |
66
- | 0.0002 | 47.06 | 2400 | 0.0292 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.07692307692307693, 'recall': 0.058823529411764705, 'f1': 0.06666666666666667, 'number': 17} | {'precision': 0.0625, 'recall': 0.058823529411764705, 'f1': 0.06060606060606061, 'number': 17} | 0.0556 | 0.0455 | 0.0500 | 0.6578 |
67
 
68
 
69
  ### Framework versions
 
14
 
15
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.0582
18
+ - Answer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8}
19
+ - Header: {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13}
20
+ - Question: {'precision': 0.1, 'recall': 0.15384615384615385, 'f1': 0.12121212121212123, 'number': 13}
21
+ - Overall Precision: 0.0682
22
+ - Overall Recall: 0.0882
23
+ - Overall F1: 0.0769
24
+ - Overall Accuracy: 0.6434
25
 
26
  ## Model description
27
 
 
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
+ | 0.1677 | 3.08 | 200 | 0.0239 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | 0.0 | 0.0 | 0.0 | 0.7295 |
56
+ | 0.0578 | 6.15 | 400 | 0.0251 | {'precision': 0.4, 'recall': 0.25, 'f1': 0.3076923076923077, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | 0.1333 | 0.0588 | 0.0816 | 0.7295 |
57
+ | 0.0275 | 9.23 | 600 | 0.0291 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.05555555555555555, 'recall': 0.07692307692307693, 'f1': 0.06451612903225808, 'number': 13} | {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13} | 0.0526 | 0.0588 | 0.0556 | 0.7008 |
58
+ | 0.0124 | 12.31 | 800 | 0.0401 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0625, 'recall': 0.07692307692307693, 'f1': 0.06896551724137931, 'number': 13} | 0.0303 | 0.0294 | 0.0299 | 0.6352 |
59
+ | 0.0086 | 15.38 | 1000 | 0.0416 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13} | {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13} | 0.0513 | 0.0588 | 0.0548 | 0.6311 |
60
+ | 0.0045 | 18.46 | 1200 | 0.0447 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | 0.0 | 0.0 | 0.0 | 0.6639 |
61
+ | 0.0027 | 21.54 | 1400 | 0.0467 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.05, 'recall': 0.07692307692307693, 'f1': 0.060606060606060615, 'number': 13} | {'precision': 0.09523809523809523, 'recall': 0.15384615384615385, 'f1': 0.11764705882352941, 'number': 13} | 0.0667 | 0.0882 | 0.0759 | 0.6639 |
62
+ | 0.0013 | 24.62 | 1600 | 0.0494 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.045454545454545456, 'recall': 0.07692307692307693, 'f1': 0.05714285714285715, 'number': 13} | {'precision': 0.08695652173913043, 'recall': 0.15384615384615385, 'f1': 0.1111111111111111, 'number': 13} | 0.0612 | 0.0882 | 0.0723 | 0.6434 |
63
+ | 0.0009 | 27.69 | 1800 | 0.0559 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.045454545454545456, 'recall': 0.07692307692307693, 'f1': 0.05714285714285715, 'number': 13} | {'precision': 0.08695652173913043, 'recall': 0.15384615384615385, 'f1': 0.1111111111111111, 'number': 13} | 0.06 | 0.0882 | 0.0714 | 0.6475 |
64
+ | 0.0006 | 30.77 | 2000 | 0.0522 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0625, 'recall': 0.07692307692307693, 'f1': 0.06896551724137931, 'number': 13} | {'precision': 0.05555555555555555, 'recall': 0.07692307692307693, 'f1': 0.06451612903225808, 'number': 13} | 0.0526 | 0.0588 | 0.0556 | 0.6393 |
65
+ | 0.0004 | 33.85 | 2200 | 0.0557 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13} | {'precision': 0.1, 'recall': 0.15384615384615385, 'f1': 0.12121212121212123, 'number': 13} | 0.0682 | 0.0882 | 0.0769 | 0.6516 |
66
+ | 0.0005 | 36.92 | 2400 | 0.0582 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13} | {'precision': 0.1, 'recall': 0.15384615384615385, 'f1': 0.12121212121212123, 'number': 13} | 0.0682 | 0.0882 | 0.0769 | 0.6434 |
67
 
68
 
69
  ### Framework versions
logs/events.out.tfevents.1695903227.Benjamins-MacBook-Pro.local.21816.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ea988e673eaf4dd4cd55d7cad90e35047dbfc6334e91d443b05556912f29d02c
3
- size 12302
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:342132b5baf46cbc7ca12c0d66f75a3535b32cf8bc120de3d94541e926611994
3
+ size 12656
preprocessor_config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "apply_ocr": true,
3
  "do_normalize": true,
4
  "do_rescale": true,
5
  "do_resize": true,
 
1
  {
2
+ "apply_ocr": false,
3
  "do_normalize": true,
4
  "do_rescale": true,
5
  "do_resize": true,
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:af88f8d7149b659d787cdd53d5ccab0deccc7cd6bd4d2a79c36e8d8dbb53bb7e
3
  size 520816014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51c27bd402f37724eca30e51ed83893ca2a2c3914d6ec5f6b4f6d1f74ce312ac
3
  size 520816014
tokenizer.json CHANGED
@@ -1,7 +1,21 @@
1
  {
2
  "version": "1.0",
3
- "truncation": null,
4
- "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": {
4
+ "direction": "Right",
5
+ "max_length": 512,
6
+ "strategy": "LongestFirst",
7
+ "stride": 0
8
+ },
9
+ "padding": {
10
+ "strategy": {
11
+ "Fixed": 512
12
+ },
13
+ "direction": "Right",
14
+ "pad_to_multiple_of": null,
15
+ "pad_id": 1,
16
+ "pad_type_id": 0,
17
+ "pad_token": "<pad>"
18
+ },
19
  "added_tokens": [
20
  {
21
  "id": 0,