Beniuv commited on
Commit
4223549
·
1 Parent(s): e5979da

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.17 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a19e91ead683116eda01c4e7686d7a682788a03ef4349b4f5c31da322ae55be0
3
+ size 106831
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e4d95386b00>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7e4d95371480>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694205469279968952,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADOmTPlmq+bszhuE+teGYv7w7rz85Nis/ASH8v7XYGT+aEJ0/g75OvepMlz6yIhy+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAe7lKPyxINL91V4s+Jy8rv9NhwT81z2Y/+2u0vz+Ujz0i354/fnpVPlLdoj4K6oO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAM6ZM+War5uzOG4T75Y+k+zlZAO6r/wT614Zi/vDuvPzk2Kz9xAEK/pZWHP/eb1T8BIfy/tdgZP5oQnT/31Po+fk3ivNjL5T+Dvk696kyXPrIiHL4hJt6/FOrLPkzwrr+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.28888738 -0.00761918 0.44047698]\n [-1.194388 1.3690104 0.6687961 ]\n [-1.9697572 0.60096294 1.2270691 ]\n [-0.05047465 0.29550868 -0.1524761 ]]",
34
+ "desired_goal": "[[ 0.7918927 -0.70422626 0.27215162]\n [-0.66868824 1.5107979 0.9015992 ]\n [-1.4095453 0.07010698 1.2411845 ]\n [ 0.20847508 0.3180948 -1.0305798 ]]",
35
+ "observation": "[[ 0.28888738 -0.00761918 0.44047698 0.45584086 0.00293486 0.3789037 ]\n [-1.194388 1.3690104 0.6687961 -0.75781924 1.0592543 1.6688222 ]\n [-1.9697572 0.60096294 1.2270691 0.48990604 -0.02762484 1.7952833 ]\n [-0.05047465 0.29550868 -0.1524761 -1.7355386 0.39827025 -1.3667083 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACRbDPSw/UL3miR89OsKHPYGTEj3bpco7qAHbPcU65T30C3E+N3bcPJqInTwXmB0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.09525687 -0.0508415 0.03894987]\n [ 0.06628843 0.0357852 0.00618432]\n [ 0.10693675 0.1119285 0.23539716]\n [ 0.02691184 0.01923018 0.15390049]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9S+zt1IRROMAWyUSwSMAXSUR0CmY0PQOWjXdX2UKGgGR7/Gnv2GqPwNaAdLA2gIR0CmYwTsyBTXdX2UKGgGR7/P18stkFwDaAdLA2gIR0CmY1MhX8wYdX2UKGgGR7/KD0163RXwaAdLA2gIR0CmYxQh4dIYdX2UKGgGR7/CC7K7qY7aaAdLAmgIR0CmY1/DDTBqdX2UKGgGR7+4JF9a2WpqaAdLAmgIR0CmYyDn3cpLdX2UKGgGR7+jaqS5iExqaAdLAWgIR0CmY2Uh/y5JdX2UKGgGR7+6BEroW56MaAdLAmgIR0CmYyurZJ05dX2UKGgGR7/GOFQEZBLPaAdLA2gIR0CmY3eLm6oVdX2UKGgGR7/SZfD1oQFtaAdLA2gIR0CmYz00vXbudX2UKGgGR7/PBBzFMqSYaAdLA2gIR0CmY4X8fmtAdX2UKGgGR7/Oku6ErXlKaAdLA2gIR0CmY0yCe2/jdX2UKGgGR7/d6STyJ9ApaAdLBGgIR0CmY2ZOafBfdX2UKGgGR7/gElVtGd7OaAdLBmgIR0CmY6rDZUT+dX2UKGgGR7/hHPmgam4zaAdLBGgIR0CmY8F6Z6UrdX2UKGgGR8AQwQRPGhmHaAdLMmgIR0CmZEdaEBbOdX2UKGgGR7/fAN5MURFraAdLBmgIR0CmY4dgv115dX2UKGgGR7/GV/MGHHmzaAdLAmgIR0CmZFJ3HJcPdX2UKGgGR7/Ra5PM0P6LaAdLA2gIR0CmY9F4TsY3dX2UKGgGR7/OiV0Lc9GJaAdLA2gIR0CmY5aMJhOQdX2UKGgGR8AO4h6jWTX8aAdLMmgIR0CmZBsqBmPHdX2UKGgGR7/ESmIj4YaYaAdLAmgIR0CmY9rOAy2ydX2UKGgGR7+24z7/GVAzaAdLAmgIR0CmY6CTdLxqdX2UKGgGR7/UJCjUNKAbaAdLBGgIR0CmZGm8VYZEdX2UKGgGR7+5tEXtShrWaAdLAmgIR0CmZHR1X/5tdX2UKGgGR7/ZxR2r4nF6aAdLBGgIR0CmZDRrSE13dX2UKGgGR7/bnjABT4tZaAdLBGgIR0CmY/RJEpiJdX2UKGgGR7/OfIS13MY/aAdLA2gIR0CmY7U52hZhdX2UKGgGR7+71AZ88cMmaAdLAmgIR0CmZD0IC2c8dX2UKGgGR7/MqJ/G2kSFaAdLA2gIR0CmZIbblA/tdX2UKGgGR7/PcQAdXDFZaAdLA2gIR0CmY8byhBZ7dX2UKGgGR7/X7MPjGT9saAdLBGgIR0CmZApVsDW9dX2UKGgGR7+1tm+TNdJKaAdLAmgIR0CmY88x9G7SdX2UKGgGR7/PhrnDBMzuaAdLA2gIR0CmZJO7YkE+dX2UKGgGR7/Xza9K28ZlaAdLBGgIR0CmZFNmlImPdX2UKGgGR7/AX2M85jpcaAdLAmgIR0CmZBL7XQMQdX2UKGgGR7/HTgEU0vXcaAdLA2gIR0CmY9/GMn7YdX2UKGgGR7/HYGMXJo0zaAdLA2gIR0CmZKRNRFZxdX2UKGgGR7/MmKqGUOd5aAdLA2gIR0CmZGQO4G2UdX2UKGgGR7/RkQf6oESvaAdLA2gIR0CmY+0xubZwdX2UKGgGR7/MlFc6eXiSaAdLA2gIR0CmZLHOjZctdX2UKGgGR7/ZLCvX9R77aAdLBGgIR0CmZHfkWAPNdX2UKGgGR7/CNCJGe+VUaAdLAmgIR0CmZL0QTVUddX2UKGgGR7+aI7/4qPOqaAdLAWgIR0CmZHztCzC2dX2UKGgGR7/buAZsKsuGaAdLBGgIR0CmZAK8UVSGdX2UKGgGR7/IK7ZnL7oCaAdLA2gIR0CmZMzru6VddX2UKGgGR7/WTM7lq8DkaAdLBGgIR0CmZJTjFQ2udX2UKGgGR7+37XQMQVbiaAdLAmgIR0CmZNotcv/SdX2UKGgGR7/XbFCLMs6JaAdLBGgIR0CmZBqmTC+DdX2UKGgGR7+i+SKWLP2PaAdLAWgIR0CmZN+e4Cp4dX2UKGgGR7/ty2QXAM2FaAdLDmgIR0CmZF8e8wpOdX2UKGgGR7/NmDlHSWqtaAdLA2gIR0CmZKR0uDjBdX2UKGgGR7+7pUxVQyh0aAdLAmgIR0CmZCUwi7kGdX2UKGgGR7/AbhFVktmMaAdLAmgIR0CmZGkkSmIkdX2UKGgGR7/NWf9P1tfpaAdLA2gIR0CmZPHDJlredX2UKGgGR7/AyVv/BFd+aAdLAmgIR0CmZLGcvugIdX2UKGgGR7/SbZezD4xlaAdLA2gIR0CmZL9Esrd4dX2UKGgGR7/WSqEOAiFCaAdLBGgIR0CmZH7jtG/fdX2UKGgGR7/ZA7gbZOBUaAdLBGgIR0CmZQTImw7ldX2UKGgGR7/FxTbWVeKLaAdLAmgIR0CmZMuLiuMddX2UKGgGR7/G5Zr56+nJaAdLA2gIR0CmZI9tl7MQdX2UKGgGR7/RtZmqYJE6aAdLA2gIR0CmZRTPBzmwdX2UKGgGR7/H6Y3Ns3yaaAdLA2gIR0CmZNhDG96DdX2UKGgGR7+8Wi1y/9HdaAdLAmgIR0CmZRz3qRlpdX2UKGgGR7++hPCVKPGRaAdLAmgIR0CmZOL1mJ3xdX2UKGgGR7/iJKaoddVvaAdLBGgIR0CmZKKL876pdX2UKGgGR7+2vllsguAaaAdLAmgIR0CmZShSLqD9dX2UKGgGR7+/UG3WnTAnaAdLAmgIR0CmZTC4J/oadX2UKGgGR7/Qix3V09yMaAdLA2gIR0CmZK/5ULlWdX2UKGgGR7/NyQPqcEvCaAdLBGgIR0CmZPTiCJ40dX2UKGgGR7/2bzkIX0oSaAdLEWgIR0CmZHwBPsRhdX2UKGgGR7/Nq9Gqgh8qaAdLA2gIR0CmZUCOWBz4dX2UKGgGR7+WY8dPtUn5aAdLAWgIR0CmZIDG1hLHdX2UKGgGR7+nv+fh/Aj6aAdLAWgIR0CmZUU8FINFdX2UKGgGR7/Tl90A93bFaAdLA2gIR0CmZQUL2HtXdX2UKGgGR7/TFKCg9NeuaAdLBGgIR0CmZMTch1TzdX2UKGgGR7+m7nPmgam5aAdLAWgIR0CmZUp+tr9EdX2UKGgGR7+5gSeyzHCGaAdLAmgIR0CmZQ4nOSntdX2UKGgGR7/RvjOs1baAaAdLA2gIR0CmZI6IN3GGdX2UKGgGR7+/XnQpnYg8aAdLAmgIR0CmZVVsDW9UdX2UKGgGR7/Ldszl90A+aAdLA2gIR0CmZNRqGlANdX2UKGgGR7+nthNM495haAdLAWgIR0CmZJVie/YbdX2UKGgGR7+/+XJHRTjvaAdLAmgIR0CmZV29L6DXdX2UKGgGR7/bLpRoAXEZaAdLBGgIR0CmZSFI3BHkdX2UKGgGR7/KcIZ62OQyaAdLA2gIR0CmZKGig00ndX2UKGgGR7+8Ug0TDfm+aAdLAmgIR0CmZWYrSVnmdX2UKGgGR7/WuMuOCGvfaAdLBGgIR0CmZOW0iQkpdX2UKGgGR7/EHoouwosqaAdLAmgIR0CmZS0rTYukdX2UKGgGR7+/1SOzY287aAdLAmgIR0CmZK2itaIOdX2UKGgGR7+z1uivgWJraAdLAmgIR0CmZXJG4I8hdX2UKGgGR7/AQ6p5u63BaAdLAmgIR0CmZLeSr5qNdX2UKGgGR7/X3s5XEIgOaAdLBGgIR0CmZPsqSX+mdX2UKGgGR7/LrFfiPyTZaAdLA2gIR0CmZYCudPLxdX2UKGgGR7/aw+MZP2wnaAdLBGgIR0CmZUCfpUxVdX2UKGgGR7/TkNWluWKNaAdLA2gIR0CmZMhcAzYVdX2UKGgGR7/Se4Cp3os7aAdLA2gIR0CmZQ0JfICEdX2UKGgGR7/NOerdWQwLaAdLA2gIR0CmZZI9kjHGdX2UKGgGR7/N00WM0gr6aAdLA2gIR0CmZVHhKlHjdX2UKGgGR7/HJr+HaewtaAdLA2gIR0CmZNXBxgiNdX2UKGgGR7+/6be/Ho5haAdLAmgIR0CmZZovBacJdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84d65d1395f4221fab7d9f49b1949477d7c6dd23589338ac2ca881b54b20df08
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:678cb12ae2ada29313ea9346f1e004936cfa9f33c38d83bbcf5634f847a7dda2
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e4d95386b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e4d95371480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694205469279968952, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADOmTPlmq+bszhuE+teGYv7w7rz85Nis/ASH8v7XYGT+aEJ0/g75OvepMlz6yIhy+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAe7lKPyxINL91V4s+Jy8rv9NhwT81z2Y/+2u0vz+Ujz0i354/fnpVPlLdoj4K6oO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAM6ZM+War5uzOG4T75Y+k+zlZAO6r/wT614Zi/vDuvPzk2Kz9xAEK/pZWHP/eb1T8BIfy/tdgZP5oQnT/31Po+fk3ivNjL5T+Dvk696kyXPrIiHL4hJt6/FOrLPkzwrr+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.28888738 -0.00761918 0.44047698]\n [-1.194388 1.3690104 0.6687961 ]\n [-1.9697572 0.60096294 1.2270691 ]\n [-0.05047465 0.29550868 -0.1524761 ]]", "desired_goal": "[[ 0.7918927 -0.70422626 0.27215162]\n [-0.66868824 1.5107979 0.9015992 ]\n [-1.4095453 0.07010698 1.2411845 ]\n [ 0.20847508 0.3180948 -1.0305798 ]]", "observation": "[[ 0.28888738 -0.00761918 0.44047698 0.45584086 0.00293486 0.3789037 ]\n [-1.194388 1.3690104 0.6687961 -0.75781924 1.0592543 1.6688222 ]\n [-1.9697572 0.60096294 1.2270691 0.48990604 -0.02762484 1.7952833 ]\n [-0.05047465 0.29550868 -0.1524761 -1.7355386 0.39827025 -1.3667083 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACRbDPSw/UL3miR89OsKHPYGTEj3bpco7qAHbPcU65T30C3E+N3bcPJqInTwXmB0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09525687 -0.0508415 0.03894987]\n [ 0.06628843 0.0357852 0.00618432]\n [ 0.10693675 0.1119285 0.23539716]\n [ 0.02691184 0.01923018 0.15390049]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9S+zt1IRROMAWyUSwSMAXSUR0CmY0PQOWjXdX2UKGgGR7/Gnv2GqPwNaAdLA2gIR0CmYwTsyBTXdX2UKGgGR7/P18stkFwDaAdLA2gIR0CmY1MhX8wYdX2UKGgGR7/KD0163RXwaAdLA2gIR0CmYxQh4dIYdX2UKGgGR7/CC7K7qY7aaAdLAmgIR0CmY1/DDTBqdX2UKGgGR7+4JF9a2WpqaAdLAmgIR0CmYyDn3cpLdX2UKGgGR7+jaqS5iExqaAdLAWgIR0CmY2Uh/y5JdX2UKGgGR7+6BEroW56MaAdLAmgIR0CmYyurZJ05dX2UKGgGR7/GOFQEZBLPaAdLA2gIR0CmY3eLm6oVdX2UKGgGR7/SZfD1oQFtaAdLA2gIR0CmYz00vXbudX2UKGgGR7/PBBzFMqSYaAdLA2gIR0CmY4X8fmtAdX2UKGgGR7/Oku6ErXlKaAdLA2gIR0CmY0yCe2/jdX2UKGgGR7/d6STyJ9ApaAdLBGgIR0CmY2ZOafBfdX2UKGgGR7/gElVtGd7OaAdLBmgIR0CmY6rDZUT+dX2UKGgGR7/hHPmgam4zaAdLBGgIR0CmY8F6Z6UrdX2UKGgGR8AQwQRPGhmHaAdLMmgIR0CmZEdaEBbOdX2UKGgGR7/fAN5MURFraAdLBmgIR0CmY4dgv115dX2UKGgGR7/GV/MGHHmzaAdLAmgIR0CmZFJ3HJcPdX2UKGgGR7/Ra5PM0P6LaAdLA2gIR0CmY9F4TsY3dX2UKGgGR7/OiV0Lc9GJaAdLA2gIR0CmY5aMJhOQdX2UKGgGR8AO4h6jWTX8aAdLMmgIR0CmZBsqBmPHdX2UKGgGR7/ESmIj4YaYaAdLAmgIR0CmY9rOAy2ydX2UKGgGR7+24z7/GVAzaAdLAmgIR0CmY6CTdLxqdX2UKGgGR7/UJCjUNKAbaAdLBGgIR0CmZGm8VYZEdX2UKGgGR7+5tEXtShrWaAdLAmgIR0CmZHR1X/5tdX2UKGgGR7/ZxR2r4nF6aAdLBGgIR0CmZDRrSE13dX2UKGgGR7/bnjABT4tZaAdLBGgIR0CmY/RJEpiJdX2UKGgGR7/OfIS13MY/aAdLA2gIR0CmY7U52hZhdX2UKGgGR7+71AZ88cMmaAdLAmgIR0CmZD0IC2c8dX2UKGgGR7/MqJ/G2kSFaAdLA2gIR0CmZIbblA/tdX2UKGgGR7/PcQAdXDFZaAdLA2gIR0CmY8byhBZ7dX2UKGgGR7/X7MPjGT9saAdLBGgIR0CmZApVsDW9dX2UKGgGR7+1tm+TNdJKaAdLAmgIR0CmY88x9G7SdX2UKGgGR7/PhrnDBMzuaAdLA2gIR0CmZJO7YkE+dX2UKGgGR7/Xza9K28ZlaAdLBGgIR0CmZFNmlImPdX2UKGgGR7/AX2M85jpcaAdLAmgIR0CmZBL7XQMQdX2UKGgGR7/HTgEU0vXcaAdLA2gIR0CmY9/GMn7YdX2UKGgGR7/HYGMXJo0zaAdLA2gIR0CmZKRNRFZxdX2UKGgGR7/MmKqGUOd5aAdLA2gIR0CmZGQO4G2UdX2UKGgGR7/RkQf6oESvaAdLA2gIR0CmY+0xubZwdX2UKGgGR7/MlFc6eXiSaAdLA2gIR0CmZLHOjZctdX2UKGgGR7/ZLCvX9R77aAdLBGgIR0CmZHfkWAPNdX2UKGgGR7/CNCJGe+VUaAdLAmgIR0CmZL0QTVUddX2UKGgGR7+aI7/4qPOqaAdLAWgIR0CmZHztCzC2dX2UKGgGR7/buAZsKsuGaAdLBGgIR0CmZAK8UVSGdX2UKGgGR7/IK7ZnL7oCaAdLA2gIR0CmZMzru6VddX2UKGgGR7/WTM7lq8DkaAdLBGgIR0CmZJTjFQ2udX2UKGgGR7+37XQMQVbiaAdLAmgIR0CmZNotcv/SdX2UKGgGR7/XbFCLMs6JaAdLBGgIR0CmZBqmTC+DdX2UKGgGR7+i+SKWLP2PaAdLAWgIR0CmZN+e4Cp4dX2UKGgGR7/ty2QXAM2FaAdLDmgIR0CmZF8e8wpOdX2UKGgGR7/NmDlHSWqtaAdLA2gIR0CmZKR0uDjBdX2UKGgGR7+7pUxVQyh0aAdLAmgIR0CmZCUwi7kGdX2UKGgGR7/AbhFVktmMaAdLAmgIR0CmZGkkSmIkdX2UKGgGR7/NWf9P1tfpaAdLA2gIR0CmZPHDJlredX2UKGgGR7/AyVv/BFd+aAdLAmgIR0CmZLGcvugIdX2UKGgGR7/SbZezD4xlaAdLA2gIR0CmZL9Esrd4dX2UKGgGR7/WSqEOAiFCaAdLBGgIR0CmZH7jtG/fdX2UKGgGR7/ZA7gbZOBUaAdLBGgIR0CmZQTImw7ldX2UKGgGR7/FxTbWVeKLaAdLAmgIR0CmZMuLiuMddX2UKGgGR7/G5Zr56+nJaAdLA2gIR0CmZI9tl7MQdX2UKGgGR7/RtZmqYJE6aAdLA2gIR0CmZRTPBzmwdX2UKGgGR7/H6Y3Ns3yaaAdLA2gIR0CmZNhDG96DdX2UKGgGR7+8Wi1y/9HdaAdLAmgIR0CmZRz3qRlpdX2UKGgGR7++hPCVKPGRaAdLAmgIR0CmZOL1mJ3xdX2UKGgGR7/iJKaoddVvaAdLBGgIR0CmZKKL876pdX2UKGgGR7+2vllsguAaaAdLAmgIR0CmZShSLqD9dX2UKGgGR7+/UG3WnTAnaAdLAmgIR0CmZTC4J/oadX2UKGgGR7/Qix3V09yMaAdLA2gIR0CmZK/5ULlWdX2UKGgGR7/NyQPqcEvCaAdLBGgIR0CmZPTiCJ40dX2UKGgGR7/2bzkIX0oSaAdLEWgIR0CmZHwBPsRhdX2UKGgGR7/Nq9Gqgh8qaAdLA2gIR0CmZUCOWBz4dX2UKGgGR7+WY8dPtUn5aAdLAWgIR0CmZIDG1hLHdX2UKGgGR7+nv+fh/Aj6aAdLAWgIR0CmZUU8FINFdX2UKGgGR7/Tl90A93bFaAdLA2gIR0CmZQUL2HtXdX2UKGgGR7/TFKCg9NeuaAdLBGgIR0CmZMTch1TzdX2UKGgGR7+m7nPmgam5aAdLAWgIR0CmZUp+tr9EdX2UKGgGR7+5gSeyzHCGaAdLAmgIR0CmZQ4nOSntdX2UKGgGR7/RvjOs1baAaAdLA2gIR0CmZI6IN3GGdX2UKGgGR7+/XnQpnYg8aAdLAmgIR0CmZVVsDW9UdX2UKGgGR7/Ldszl90A+aAdLA2gIR0CmZNRqGlANdX2UKGgGR7+nthNM495haAdLAWgIR0CmZJVie/YbdX2UKGgGR7+/+XJHRTjvaAdLAmgIR0CmZV29L6DXdX2UKGgGR7/bLpRoAXEZaAdLBGgIR0CmZSFI3BHkdX2UKGgGR7/KcIZ62OQyaAdLA2gIR0CmZKGig00ndX2UKGgGR7+8Ug0TDfm+aAdLAmgIR0CmZWYrSVnmdX2UKGgGR7/WuMuOCGvfaAdLBGgIR0CmZOW0iQkpdX2UKGgGR7/EHoouwosqaAdLAmgIR0CmZS0rTYukdX2UKGgGR7+/1SOzY287aAdLAmgIR0CmZK2itaIOdX2UKGgGR7+z1uivgWJraAdLAmgIR0CmZXJG4I8hdX2UKGgGR7/AQ6p5u63BaAdLAmgIR0CmZLeSr5qNdX2UKGgGR7/X3s5XEIgOaAdLBGgIR0CmZPsqSX+mdX2UKGgGR7/LrFfiPyTZaAdLA2gIR0CmZYCudPLxdX2UKGgGR7/aw+MZP2wnaAdLBGgIR0CmZUCfpUxVdX2UKGgGR7/TkNWluWKNaAdLA2gIR0CmZMhcAzYVdX2UKGgGR7/Se4Cp3os7aAdLA2gIR0CmZQ0JfICEdX2UKGgGR7/NOerdWQwLaAdLA2gIR0CmZZI9kjHGdX2UKGgGR7/N00WM0gr6aAdLA2gIR0CmZVHhKlHjdX2UKGgGR7/HJr+HaewtaAdLA2gIR0CmZNXBxgiNdX2UKGgGR7+/6be/Ho5haAdLAmgIR0CmZZovBacJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (668 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.17231847820803523, "std_reward": 0.10839859837288203, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-08T21:31:51.530529"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97062de34b43b02a7d9de388c6b1fbf410b95f45d6605b0b8f6614ef10326186
3
+ size 2623