File size: 6,092 Bytes
038b592 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
base_model:
- 01-ai/Yi-Coder-9B-Chat
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [MoE](https://arxiv.org/abs/2306.01708) merge method using [01-ai/Yi-Coder-9B-Chat](https://huggingface.co/01-ai/Yi-Coder-9B-Chat) as a base.
### Models Merged
The following models were included in the merge:
* [01-ai/Yi-Coder-9B-Chat](https://huggingface.co/01-ai/Yi-Coder-9B-Chat)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: 01-ai/Yi-Coder-9B-Chat
gate_mode: random
dtype: bfloat16
experts:
- source_model: 01-ai/Yi-Coder-9B-Chat
- source_model: 01-ai/Yi-Coder-9B-Chat
- source_model: 01-ai/Yi-Coder-9B-Chat
- source_model: 01-ai/Yi-Coder-9B-Chat
- source_model: 01-ai/Yi-Coder-9B-Chat
- source_model: 01-ai/Yi-Coder-9B-Chat
- source_model: 01-ai/Yi-Coder-9B-Chat
- source_model: 01-ai/Yi-Coder-9B-Chat
```
<picture>
<img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="120px">
</picture>
</div>
<p align="center">
<a href="https://github.com/01-ai">π GitHub</a> β’
<a href="https://discord.gg/hYUwWddeAu">πΎ Discord</a> β’
<a href="https://twitter.com/01ai_yi">π€ Twitter</a> β’
<a href="https://github.com/01-ai/Yi-1.5/issues/2">π¬ WeChat</a>
<br/>
<a href="https://arxiv.org/abs/2403.04652">π Paper</a> β’
<a href="https://01-ai.github.io/">πͺ Tech Blog</a> β’
<a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">π FAQ</a> β’
<a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">π Learning Hub</a>
</p>
# Intro
Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters.
Key features:
- Excelling in long-context understanding with a maximum context length of 128K tokens.
- Supporting 52 major programming languages:
```bash
'java', 'markdown', 'python', 'php', 'javascript', 'c++', 'c#', 'c', 'typescript', 'html', 'go', 'java_server_pages', 'dart', 'objective-c', 'kotlin', 'tex', 'swift', 'ruby', 'sql', 'rust', 'css', 'yaml', 'matlab', 'lua', 'json', 'shell', 'visual_basic', 'scala', 'rmarkdown', 'pascal', 'fortran', 'haskell', 'assembly', 'perl', 'julia', 'cmake', 'groovy', 'ocaml', 'powershell', 'elixir', 'clojure', 'makefile', 'coffeescript', 'erlang', 'lisp', 'toml', 'batchfile', 'cobol', 'dockerfile', 'r', 'prolog', 'verilog'
```
For model details and benchmarks, see [Yi-Coder blog](https://01-ai.github.io/) and [Yi-Coder README](https://github.com/01-ai/Yi-Coder).
<p align="left">
<img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/yi-coder-calculator-demo.gif?raw=true" alt="demo1" width="500"/>
</p>
# Models
| Name | Type | Length | Download |
|--------------------|------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Yi-Coder-9B-Chat | Chat | 128K | [π€ Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B-Chat) β’ [π€ ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B-Chat) β’ [π£ wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B-Chat) |
| Yi-Coder-1.5B-Chat | Chat | 128K | [π€ Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B-Chat) β’ [π€ ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B-Chat) β’ [π£ wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B-Chat) |
| Yi-Coder-9B | Base | 128K | [π€ Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B) β’ [π€ ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B) β’ [π£ wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B) |
| Yi-Coder-1.5B | Base | 128K | [π€ Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B) β’ [π€ ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B) β’ [π£ wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B) |
| |
# Benchmarks
As illustrated in the figure below, Yi-Coder-9B-Chat achieved an impressive 23% pass rate in LiveCodeBench, making it the only model with under 10B parameters to surpass 20%. It also outperforms DeepSeekCoder-33B-Ins at 22.3%, CodeGeex4-9B-all at 17.8%, CodeLLama-34B-Ins at 13.3%, and CodeQwen1.5-7B-Chat at 12%.
<p align="left">
<img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/bench1.webp?raw=true" alt="bench1" width="1000"/>
</p>
# Quick Start
You can use transformers to run inference with Yi-Coder models (both chat and base versions) as follows:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
device = "cuda" # the device to load the model onto
model_path = "01-ai/Yi-Coder-9B-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()
prompt = "Write a quick sort algorithm."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
For getting up and running with Yi-Coder series models quickly, see [Yi-Coder |