Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1262.30 +/- 40.05
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2b56eeef91cafb0e101029e6c281ce79ea382dbd296d0112932b0ff46b2fb31
|
3 |
+
size 129192
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f95e9e73170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f95e9e73200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f95e9e73290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f95e9e73320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f95e9e733b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f95e9e73440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f95e9e734d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f95e9e73560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f95e9e735f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f95e9e73680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f95e9e73710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f95e9eb3d50>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1660723541.215957,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAdpcDvaNGgD+cmoS+pL19P7JXuD3aQv0+3hGNPooU+r64OAC/m+vQv5AuoT99ju89yDapvzywbz3MjHO+eVFuvzbk0L4e3cq/q0MrP5Y/1L1DKdM/bMjtvpnl3j7WmsE/oBl+P81A6j5xK7I+W63Pv6I0yT5aKa29QJksP8FVBT85q44+TN0UPrnCLD86pC6/mNuYP+9TvL5hPuQ/4gubv4Jgk7/n0uQ/wUAtv8rcgcC1Dsi/k2ZNPvt2KD9BpQk8wMy4vuJRGb/OgHc+VpjCPqAZfj8D4gvAcSuyPonIHT8Q7Du+BaROvyaZJT+2lng/gA7yvUyaOz9N90i+4B+vvl/U7z7swQK/tOkzv4gqqDw1tn6//d49PzeHeD5dB8Y9Ea+evyaIcD+e9Os+lW8lv1IyPr+iFpi9r+UiPnn9Zj4B9YC/zUDqPnErsj6JyB0/JYAtP2x7Ab97aDY/SsXuv8mqBMDbyBPAlbfcPxrfDj+9lDM9rGVZwJ30M0D5kv687gxePdzvKMDX9zHAE99tPQEfdr/tn9TAzmmOvudDgz+eFrk/saapv7MWHL+H0V8/oBl+PwPiC8Af6jfAW63Pv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAACe7kTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBE4/+9AAAAANlH7r8AAAAA8a8KvgAAAAA5k94/AAAAAPIkqD0AAAAAvcHmPwAAAAAJdOG9AAAAAMiW3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADdwFG0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1MAZvQAAAAD05ti/AAAAAHsfhL0AAAAAjRv6PwAAAAD0VNs9AAAAAPfs5D8AAAAAspGuPQAAAAB7x96/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFn9TtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL/BzzwAAAAAhUHdvwAAAABm3s29AAAAADG23T8AAAAAjwKHPQAAAABl8Po/AAAAAGtvTb0AAAAAFYravwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALGjajYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC4pEW9AAAAAJ7j4L8AAAAAdqvQOwAAAACfR9k/AAAAAB1DFb0AAAAAJA77PwAAAAAK6Qu+AAAAAA326b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUByyprDZWMAWyUTegDjAF0lEdAqZi4VZcLSnV9lChoBkdAkxEiJwbVBmgHTegDaAhHQKmlOBjnV5N1fZQoaAZHQJLT5EG7jDNoB03oA2gIR0CppcJCrtE5dX2UKGgGR0CTx1Ls8gZCaAdN6ANoCEdAqaamjRD1G3V9lChoBkdAkvqf7el9B2gHTegDaAhHQKmnYVdonKJ1fZQoaAZHQJLrpRaX8fpoB03oA2gIR0CpspGlImPYdX2UKGgGR0CRDrtmcvugaAdN6ANoCEdAqbMbnV5KOHV9lChoBkdAkYxdPxhDxGgHTegDaAhHQKm0CkHD7651fZQoaAZHQJMWyjk+5e9oB03oA2gIR0CptLzXz19OdX2UKGgGR0CRgCraM72daAdN6ANoCEdAqb/8xO+IuXV9lChoBkdAj3+EYGdI5GgHTegDaAhHQKnAiNCJGfB1fZQoaAZHQJKoNaC+UQloB03oA2gIR0CpwXD+BH09dX2UKGgGR0CS4dJ5E+gUaAdN6ANoCEdAqcIkpXp4bHV9lChoBkdAka+hn3+MqGgHTegDaAhHQKnNR3RG+bp1fZQoaAZHQJCQ00CRwIdoB03oA2gIR0Cpzcp1zQu3dX2UKGgGR0CRdeEGZ/kOaAdN6ANoCEdAqc6yTlkpZ3V9lChoBkdAlFBaFZgXuWgHTegDaAhHQKnPZ9n9Nvh1fZQoaAZHQJDxyFh5PdloB03oA2gIR0Cp2nUQCjk/dX2UKGgGR0CN9KJyhi9aaAdN6ANoCEdAqdr/RLK3eHV9lChoBkdAk6JLLt/nXGgHTegDaAhHQKnb9JAdGRV1fZQoaAZHQJHdpN7BwddoB03oA2gIR0Cp3LCJ40MxdX2UKGgGR0CSLJs90RvnaAdN6ANoCEdAqee2QbMot3V9lChoBkdAkt8rsByS3mgHTegDaAhHQKnoPGWldkd1fZQoaAZHQJMh06T4cm1oB03oA2gIR0Cp6SeOGTLXdX2UKGgGR0CSnRL0Bfa6aAdN6ANoCEdAqenZmVZ9u3V9lChoBkdAiqyu/tY0VWgHTegDaAhHQKn09pVS4vx1fZQoaAZHQI2B3GMn7YVoB03oA2gIR0Cp9YwmNR3vdX2UKGgGR0CNDfvmYBvKaAdN6ANoCEdAqfZzTUiIL3V9lChoBkdAjDunLA57xGgHTegDaAhHQKn3LqUu+RJ1fZQoaAZHQJIecyLyc1BoB03oA2gIR0CqAlQlByCGdX2UKGgGR0CRpVYmsvIwaAdN6ANoCEdAqgLZ00WM0nV9lChoBkdAkU4gIppeu2gHTegDaAhHQKoDug7HQyB1fZQoaAZHQJBt/JHRTjxoB03oA2gIR0CqBGiUX531dX2UKGgGR0CJeoq0dBBzaAdN6ANoCEdAqg90A3kxRHV9lChoBkdAk24c/lhgE2gHTegDaAhHQKoP96Mzdk91fZQoaAZHQJGwa+TNdJJoB03oA2gIR0CqENo+GGmDdX2UKGgGR0CSCGhisny/aAdN6ANoCEdAqhGTlkpZwHV9lChoBkdAkfnV0T101mgHTegDaAhHQKoclRdhRZV1fZQoaAZHQJEnI4o7V8VoB03oA2gIR0CqHSABT4tZdX2UKGgGR0CQmLRHww0waAdN6ANoCEdAqh4D3dsSCnV9lChoBkdAkYkGapgkT2gHTegDaAhHQKoetG3nZCh1fZQoaAZHQJLo+5hBqsVoB03oA2gIR0CqKb6CL/CJdX2UKGgGR0CT2suHvc8DaAdN6ANoCEdAqipD7/GVA3V9lChoBkdAkxHtMbm2cGgHTegDaAhHQKorIAoXsPd1fZQoaAZHQJROdG7SRbNoB03oA2gIR0CqK9IcrAgxdX2UKGgGR0CTyQ35vcagaAdN6ANoCEdAqjbvt4RmLHV9lChoBkdAlAg7ytmthmgHTegDaAhHQKo3cJIlMRJ1fZQoaAZHQJPdoL8aXKNoB03oA2gIR0CqOFFiay8jdX2UKGgGR0CUqkd69kBkaAdN6ANoCEdAqjkHRXwLE3V9lChoBkdAkvpBESdvsWgHTegDaAhHQKpEILofSx91fZQoaAZHQJLJvmvGIbhoB03oA2gIR0CqRKsuFpPAdX2UKGgGR0CUDsj+aScLaAdN6ANoCEdAqkWIeii7CnV9lChoBkdAkpluarmyPmgHTegDaAhHQKpGRczImw91fZQoaAZHQJJXKRjjJdVoB03oA2gIR0CqUVgnMMZxdX2UKGgGR0CTQE5ZKWcCaAdN6ANoCEdAqlHc4T9KmXV9lChoBkdAks698zAN5WgHTegDaAhHQKpSwzch1T11fZQoaAZHQJHm/blA/s5oB03oA2gIR0CqU3/EwWWQdX2UKGgGR0CRccNA1NxmaAdN6ANoCEdAql6pLCemN3V9lChoBkdAklUGPLgXM2gHTegDaAhHQKpfNE8aGYd1fZQoaAZHQJJ+ap0fYBhoB03oA2gIR0CqYBR4Y77sdX2UKGgGR0CSCmTGHYYjaAdN6ANoCEdAqmDQJqqOtHV9lChoBkdAkayfzBhx52gHTegDaAhHQKpr5e+mFal1fZQoaAZHQJID4C5mRNhoB03oA2gIR0CqbG5XU6PsdX2UKGgGR0CSFMzqKP4maAdN6ANoCEdAqm1ZfpljE3V9lChoBkdAkjrW7FsHjmgHTegDaAhHQKpuDhUipvR1fZQoaAZHQJPkQVrRBu5oB03oA2gIR0CqeTtaIN3GdX2UKGgGR0CTfKtaY/mlaAdN6ANoCEdAqnnHHHWBjHV9lChoBkdAk2oGAoXsPmgHTegDaAhHQKp6p/Ot4iZ1fZQoaAZHQJLZqyUs4DNoB03oA2gIR0Cqe1+QU5+6dX2UKGgGR0CR1Z6xgRbsaAdN6ANoCEdAqoZxWBBiTnV9lChoBkdAkVhd6HCXQmgHTegDaAhHQKqG81baAWl1fZQoaAZHQJHfmHKwIMVoB03oA2gIR0Cqh9uEM9bHdX2UKGgGR0CRugg7YChfaAdN6ANoCEdAqoiW7OE/S3V9lChoBkdAj4LTUiILxGgHTegDaAhHQKqTlNHpbEB1fZQoaAZHQJG1uO7xusNoB03oA2gIR0CqlBnGS6lMdX2UKGgGR0CRMebILgGbaAdN6ANoCEdAqpT05GSZB3V9lChoBkdAkSmhiLEUCmgHTegDaAhHQKqVp+mWMS91fZQoaAZHQJEfx+Zw4sFoB03oA2gIR0CqoLKVyFPBdX2UKGgGR0CR4/lZowmFaAdN6ANoCEdAqqE10Lc9GXV9lChoBkdAkfd+lGgBcWgHTegDaAhHQKqiFMfRu0l1fZQoaAZHQJLGfEvTPSloB03oA2gIR0CqostUn5SFdX2UKGgGR0CSE7tVrAP/aAdN6ANoCEdAqq4DnA6+4HV9lChoBkdAk2Ww176YV2gHTegDaAhHQKqui+zMRpV1fZQoaAZHQIWDDhgmZ3NoB03oA2gIR0Cqr2mrCFbndX2UKGgGR0CT4d8kD6nBaAdN6ANoCEdAqrAgDaGpM3V9lChoBkdAkfSVk1/DtWgHTegDaAhHQKq7SDZDiOx1fZQoaAZHQJUVT0Fr2xpoB03oA2gIR0Cqu8z1K5CodX2UKGgGR0CTQNA44p+daAdN6ANoCEdAqrysh9srNHV9lChoBkdAkpLvVmSQo2gHTegDaAhHQKq9YzsQd0d1fZQoaAZHQJOOYbOu7pVoB03oA2gIR0CqyhJhF3INdX2UKGgGR0CUHbiMYMvzaAdN6ANoCEdAqsqZJ04io3V9lChoBkdAlVYXTZxrBWgHTegDaAhHQKrLh5ylvZR1fZQoaAZHQJI9jTZxrBVoB03oA2gIR0CqzEvddmg8dX2UKGgGR0CUomGxlg+haAdN6ANoCEdAqtdKsGPgenV9lChoBkdAkxNMCo0hvGgHTegDaAhHQKrX1YmsvIx1fZQoaAZHQJU8M1pCa7VoB03oA2gIR0Cq2Lsh5gPVdX2UKGgGR0CU4JtdzGPxaAdN6ANoCEdAqtl2PgeijHV9lChoBkdAlQQ1PBSDRWgHTegDaAhHQKrkkzE74i51fZQoaAZHQJUlZiCrcTJoB03oA2gIR0Cq5Rum78NydX2UKGgGR0CUguKWszVMaAdN6ANoCEdAquYRjc2zfXVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e295c8459e86395281d7a29cf33c013cb89cac995b8359be6320b1588b588c4
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37b4a519f1f00b1d3e5369954994d8090a12f6cd715afb04c4983bdadff9e0bd
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f95e9e73170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f95e9e73200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f95e9e73290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f95e9e73320>", "_build": "<function ActorCriticPolicy._build at 0x7f95e9e733b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f95e9e73440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f95e9e734d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f95e9e73560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f95e9e735f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f95e9e73680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f95e9e73710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f95e9eb3d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660723541.215957, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAdpcDvaNGgD+cmoS+pL19P7JXuD3aQv0+3hGNPooU+r64OAC/m+vQv5AuoT99ju89yDapvzywbz3MjHO+eVFuvzbk0L4e3cq/q0MrP5Y/1L1DKdM/bMjtvpnl3j7WmsE/oBl+P81A6j5xK7I+W63Pv6I0yT5aKa29QJksP8FVBT85q44+TN0UPrnCLD86pC6/mNuYP+9TvL5hPuQ/4gubv4Jgk7/n0uQ/wUAtv8rcgcC1Dsi/k2ZNPvt2KD9BpQk8wMy4vuJRGb/OgHc+VpjCPqAZfj8D4gvAcSuyPonIHT8Q7Du+BaROvyaZJT+2lng/gA7yvUyaOz9N90i+4B+vvl/U7z7swQK/tOkzv4gqqDw1tn6//d49PzeHeD5dB8Y9Ea+evyaIcD+e9Os+lW8lv1IyPr+iFpi9r+UiPnn9Zj4B9YC/zUDqPnErsj6JyB0/JYAtP2x7Ab97aDY/SsXuv8mqBMDbyBPAlbfcPxrfDj+9lDM9rGVZwJ30M0D5kv687gxePdzvKMDX9zHAE99tPQEfdr/tn9TAzmmOvudDgz+eFrk/saapv7MWHL+H0V8/oBl+PwPiC8Af6jfAW63Pv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAACe7kTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBE4/+9AAAAANlH7r8AAAAA8a8KvgAAAAA5k94/AAAAAPIkqD0AAAAAvcHmPwAAAAAJdOG9AAAAAMiW3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADdwFG0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1MAZvQAAAAD05ti/AAAAAHsfhL0AAAAAjRv6PwAAAAD0VNs9AAAAAPfs5D8AAAAAspGuPQAAAAB7x96/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFn9TtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL/BzzwAAAAAhUHdvwAAAABm3s29AAAAADG23T8AAAAAjwKHPQAAAABl8Po/AAAAAGtvTb0AAAAAFYravwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALGjajYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC4pEW9AAAAAJ7j4L8AAAAAdqvQOwAAAACfR9k/AAAAAB1DFb0AAAAAJA77PwAAAAAK6Qu+AAAAAA326b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUByyprDZWMAWyUTegDjAF0lEdAqZi4VZcLSnV9lChoBkdAkxEiJwbVBmgHTegDaAhHQKmlOBjnV5N1fZQoaAZHQJLT5EG7jDNoB03oA2gIR0CppcJCrtE5dX2UKGgGR0CTx1Ls8gZCaAdN6ANoCEdAqaamjRD1G3V9lChoBkdAkvqf7el9B2gHTegDaAhHQKmnYVdonKJ1fZQoaAZHQJLrpRaX8fpoB03oA2gIR0CpspGlImPYdX2UKGgGR0CRDrtmcvugaAdN6ANoCEdAqbMbnV5KOHV9lChoBkdAkYxdPxhDxGgHTegDaAhHQKm0CkHD7651fZQoaAZHQJMWyjk+5e9oB03oA2gIR0CptLzXz19OdX2UKGgGR0CRgCraM72daAdN6ANoCEdAqb/8xO+IuXV9lChoBkdAj3+EYGdI5GgHTegDaAhHQKnAiNCJGfB1fZQoaAZHQJKoNaC+UQloB03oA2gIR0CpwXD+BH09dX2UKGgGR0CS4dJ5E+gUaAdN6ANoCEdAqcIkpXp4bHV9lChoBkdAka+hn3+MqGgHTegDaAhHQKnNR3RG+bp1fZQoaAZHQJCQ00CRwIdoB03oA2gIR0Cpzcp1zQu3dX2UKGgGR0CRdeEGZ/kOaAdN6ANoCEdAqc6yTlkpZ3V9lChoBkdAlFBaFZgXuWgHTegDaAhHQKnPZ9n9Nvh1fZQoaAZHQJDxyFh5PdloB03oA2gIR0Cp2nUQCjk/dX2UKGgGR0CN9KJyhi9aaAdN6ANoCEdAqdr/RLK3eHV9lChoBkdAk6JLLt/nXGgHTegDaAhHQKnb9JAdGRV1fZQoaAZHQJHdpN7BwddoB03oA2gIR0Cp3LCJ40MxdX2UKGgGR0CSLJs90RvnaAdN6ANoCEdAqee2QbMot3V9lChoBkdAkt8rsByS3mgHTegDaAhHQKnoPGWldkd1fZQoaAZHQJMh06T4cm1oB03oA2gIR0Cp6SeOGTLXdX2UKGgGR0CSnRL0Bfa6aAdN6ANoCEdAqenZmVZ9u3V9lChoBkdAiqyu/tY0VWgHTegDaAhHQKn09pVS4vx1fZQoaAZHQI2B3GMn7YVoB03oA2gIR0Cp9YwmNR3vdX2UKGgGR0CNDfvmYBvKaAdN6ANoCEdAqfZzTUiIL3V9lChoBkdAjDunLA57xGgHTegDaAhHQKn3LqUu+RJ1fZQoaAZHQJIecyLyc1BoB03oA2gIR0CqAlQlByCGdX2UKGgGR0CRpVYmsvIwaAdN6ANoCEdAqgLZ00WM0nV9lChoBkdAkU4gIppeu2gHTegDaAhHQKoDug7HQyB1fZQoaAZHQJBt/JHRTjxoB03oA2gIR0CqBGiUX531dX2UKGgGR0CJeoq0dBBzaAdN6ANoCEdAqg90A3kxRHV9lChoBkdAk24c/lhgE2gHTegDaAhHQKoP96Mzdk91fZQoaAZHQJGwa+TNdJJoB03oA2gIR0CqENo+GGmDdX2UKGgGR0CSCGhisny/aAdN6ANoCEdAqhGTlkpZwHV9lChoBkdAkfnV0T101mgHTegDaAhHQKoclRdhRZV1fZQoaAZHQJEnI4o7V8VoB03oA2gIR0CqHSABT4tZdX2UKGgGR0CQmLRHww0waAdN6ANoCEdAqh4D3dsSCnV9lChoBkdAkYkGapgkT2gHTegDaAhHQKoetG3nZCh1fZQoaAZHQJLo+5hBqsVoB03oA2gIR0CqKb6CL/CJdX2UKGgGR0CT2suHvc8DaAdN6ANoCEdAqipD7/GVA3V9lChoBkdAkxHtMbm2cGgHTegDaAhHQKorIAoXsPd1fZQoaAZHQJROdG7SRbNoB03oA2gIR0CqK9IcrAgxdX2UKGgGR0CTyQ35vcagaAdN6ANoCEdAqjbvt4RmLHV9lChoBkdAlAg7ytmthmgHTegDaAhHQKo3cJIlMRJ1fZQoaAZHQJPdoL8aXKNoB03oA2gIR0CqOFFiay8jdX2UKGgGR0CUqkd69kBkaAdN6ANoCEdAqjkHRXwLE3V9lChoBkdAkvpBESdvsWgHTegDaAhHQKpEILofSx91fZQoaAZHQJLJvmvGIbhoB03oA2gIR0CqRKsuFpPAdX2UKGgGR0CUDsj+aScLaAdN6ANoCEdAqkWIeii7CnV9lChoBkdAkpluarmyPmgHTegDaAhHQKpGRczImw91fZQoaAZHQJJXKRjjJdVoB03oA2gIR0CqUVgnMMZxdX2UKGgGR0CTQE5ZKWcCaAdN6ANoCEdAqlHc4T9KmXV9lChoBkdAks698zAN5WgHTegDaAhHQKpSwzch1T11fZQoaAZHQJHm/blA/s5oB03oA2gIR0CqU3/EwWWQdX2UKGgGR0CRccNA1NxmaAdN6ANoCEdAql6pLCemN3V9lChoBkdAklUGPLgXM2gHTegDaAhHQKpfNE8aGYd1fZQoaAZHQJJ+ap0fYBhoB03oA2gIR0CqYBR4Y77sdX2UKGgGR0CSCmTGHYYjaAdN6ANoCEdAqmDQJqqOtHV9lChoBkdAkayfzBhx52gHTegDaAhHQKpr5e+mFal1fZQoaAZHQJID4C5mRNhoB03oA2gIR0CqbG5XU6PsdX2UKGgGR0CSFMzqKP4maAdN6ANoCEdAqm1ZfpljE3V9lChoBkdAkjrW7FsHjmgHTegDaAhHQKpuDhUipvR1fZQoaAZHQJPkQVrRBu5oB03oA2gIR0CqeTtaIN3GdX2UKGgGR0CTfKtaY/mlaAdN6ANoCEdAqnnHHHWBjHV9lChoBkdAk2oGAoXsPmgHTegDaAhHQKp6p/Ot4iZ1fZQoaAZHQJLZqyUs4DNoB03oA2gIR0Cqe1+QU5+6dX2UKGgGR0CR1Z6xgRbsaAdN6ANoCEdAqoZxWBBiTnV9lChoBkdAkVhd6HCXQmgHTegDaAhHQKqG81baAWl1fZQoaAZHQJHfmHKwIMVoB03oA2gIR0Cqh9uEM9bHdX2UKGgGR0CRugg7YChfaAdN6ANoCEdAqoiW7OE/S3V9lChoBkdAj4LTUiILxGgHTegDaAhHQKqTlNHpbEB1fZQoaAZHQJG1uO7xusNoB03oA2gIR0CqlBnGS6lMdX2UKGgGR0CRMebILgGbaAdN6ANoCEdAqpT05GSZB3V9lChoBkdAkSmhiLEUCmgHTegDaAhHQKqVp+mWMS91fZQoaAZHQJEfx+Zw4sFoB03oA2gIR0CqoLKVyFPBdX2UKGgGR0CR4/lZowmFaAdN6ANoCEdAqqE10Lc9GXV9lChoBkdAkfd+lGgBcWgHTegDaAhHQKqiFMfRu0l1fZQoaAZHQJLGfEvTPSloB03oA2gIR0CqostUn5SFdX2UKGgGR0CSE7tVrAP/aAdN6ANoCEdAqq4DnA6+4HV9lChoBkdAk2Ww176YV2gHTegDaAhHQKqui+zMRpV1fZQoaAZHQIWDDhgmZ3NoB03oA2gIR0Cqr2mrCFbndX2UKGgGR0CT4d8kD6nBaAdN6ANoCEdAqrAgDaGpM3V9lChoBkdAkfSVk1/DtWgHTegDaAhHQKq7SDZDiOx1fZQoaAZHQJUVT0Fr2xpoB03oA2gIR0Cqu8z1K5CodX2UKGgGR0CTQNA44p+daAdN6ANoCEdAqrysh9srNHV9lChoBkdAkpLvVmSQo2gHTegDaAhHQKq9YzsQd0d1fZQoaAZHQJOOYbOu7pVoB03oA2gIR0CqyhJhF3INdX2UKGgGR0CUHbiMYMvzaAdN6ANoCEdAqsqZJ04io3V9lChoBkdAlVYXTZxrBWgHTegDaAhHQKrLh5ylvZR1fZQoaAZHQJI9jTZxrBVoB03oA2gIR0CqzEvddmg8dX2UKGgGR0CUomGxlg+haAdN6ANoCEdAqtdKsGPgenV9lChoBkdAkxNMCo0hvGgHTegDaAhHQKrX1YmsvIx1fZQoaAZHQJU8M1pCa7VoB03oA2gIR0Cq2Lsh5gPVdX2UKGgGR0CU4JtdzGPxaAdN6ANoCEdAqtl2PgeijHV9lChoBkdAlQQ1PBSDRWgHTegDaAhHQKrkkzE74i51fZQoaAZHQJUlZiCrcTJoB03oA2gIR0Cq5Rum78NydX2UKGgGR0CUguKWszVMaAdN6ANoCEdAquYRjc2zfXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a452a487e88d9b5826d78d31b000d907d77d22e8d461a5e3e188efc29c13c43
|
3 |
+
size 1005753
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1262.2961758798454, "std_reward": 40.04519911750568, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-17T10:28:53.044869"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:784eb172404e12fcd2bef656ae0a2ef0595cda9ab46548c076ec7fdf7a878f91
|
3 |
+
size 2763
|