Behpouyan commited on
Commit
2618c2d
1 Parent(s): 383ae7b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -8
README.md CHANGED
@@ -13,9 +13,6 @@ This model is fine-tuned for the task of masked language modeling in Persian. Th
13
  - **Model type:** Encoder
14
  - **Language(s) (NLP):** Persian
15
 
16
- ### Direct Use
17
-
18
- The model is intended to be used directly for the task of predicting the most likely word for a masked token in Persian sentences. By simply providing a sentence with a masked word (e.g., <mask>), users can leverage the model for text completion, semantic prediction, and contextual understanding.
19
 
20
  ## How to Get Started with the Model
21
 
@@ -29,11 +26,11 @@ model = AutoModelForMaskedLM.from_pretrained("Behpouyan/Behpouyan-Fill-Mask")
29
 
30
  # List of 5 Persian sentences with a masked word (replacing a word with [MASK])
31
  sentences = [
32
- "این کتاب بسیار <mask> است.", # The book is very [MASK]
33
- "مشتری همیشه از <mask> شما راضی است.", # The customer is always satisfied with your [MASK]
34
- "من به دنبال <mask> هستم.", # I am looking for [MASK]
35
- "این پروژه نیاز به <mask> دارد.", # This project needs [MASK]
36
- "تیم ما برای انجام کارها <mask> است." # Our team is [MASK] to do the tasks
37
  ]
38
 
39
  # Function to predict masked words
 
13
  - **Model type:** Encoder
14
  - **Language(s) (NLP):** Persian
15
 
 
 
 
16
 
17
  ## How to Get Started with the Model
18
 
 
26
 
27
  # List of 5 Persian sentences with a masked word (replacing a word with [MASK])
28
  sentences = [
29
+ "این کتاب بسیار <mask> است.", # The book is very <mask
30
+ "مشتری همیشه از <mask> شما راضی است.", # The customer is always satisfied with your <mask
31
+ "من به دنبال <mask> هستم.", # I am looking for <mask
32
+ "این پروژه نیاز به <mask> دارد.", # This project needs <mask
33
+ "تیم ما برای انجام کارها <mask> است." # Our team is <mask to do the tasks
34
  ]
35
 
36
  # Function to predict masked words