File size: 1,988 Bytes
e9c72e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60142a7
e9c72e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60142a7
e9c72e6
 
 
 
 
 
60142a7
 
e9c72e6
 
 
 
 
60142a7
 
 
 
 
 
 
 
 
 
e9c72e6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: uz_2301_3.01_tts
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# uz_2301_3.01_tts

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4463

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.4585        | 10.0  | 500  | 0.4543          |
| 0.4313        | 20.0  | 1000 | 0.4337          |
| 0.4032        | 30.0  | 1500 | 0.4295          |
| 0.3679        | 40.0  | 2000 | 0.4197          |
| 0.3623        | 50.0  | 2500 | 0.4206          |
| 0.3526        | 60.0  | 3000 | 0.4166          |
| 0.3356        | 70.0  | 3500 | 0.4243          |
| 0.3273        | 80.0  | 4000 | 0.4247          |
| 0.3267        | 90.0  | 4500 | 0.4366          |
| 0.3166        | 100.0 | 5000 | 0.4463          |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0