Create evaluate.py
Browse files- evaluate.py +27 -0
evaluate.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from daedalus_mobile import DaedalusMobile
|
3 |
+
from tokenizer import DaedalusTokenizer
|
4 |
+
from config import config
|
5 |
+
|
6 |
+
def evaluate(model, device, eval_loader):
|
7 |
+
model.eval()
|
8 |
+
total_loss = 0
|
9 |
+
with torch.no_grad():
|
10 |
+
for batch in eval_loader:
|
11 |
+
input_ids, attention_mask, labels = batch
|
12 |
+
input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)
|
13 |
+
loss = model.eval_step((input_ids, attention_mask, labels))
|
14 |
+
total_loss += loss.item()
|
15 |
+
return total_loss / len(eval_loader)
|
16 |
+
|
17 |
+
def main():
|
18 |
+
device = torch.device(config.device)
|
19 |
+
model = DaedalusMobile(config)
|
20 |
+
model.to(device)
|
21 |
+
tokenizer = DaedalusTokenizer(config)
|
22 |
+
eval_loader = torch.utils.data.DataLoader(dataset=eval_dataset, batch_size=config.batch_size, shuffle=False)
|
23 |
+
loss = evaluate(model, device, eval_loader)
|
24 |
+
print(f'Loss: {loss:.4f}')
|
25 |
+
|
26 |
+
if __name__ == '__main__':
|
27 |
+
main()
|