Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-PandaPickAndPlace-v3.zip +3 -0
- tqc-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- tqc-PandaPickAndPlace-v3/actor.optimizer.pth +3 -0
- tqc-PandaPickAndPlace-v3/critic.optimizer.pth +3 -0
- tqc-PandaPickAndPlace-v3/data +125 -0
- tqc-PandaPickAndPlace-v3/ent_coef_optimizer.pth +3 -0
- tqc-PandaPickAndPlace-v3/policy.pth +3 -0
- tqc-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- tqc-PandaPickAndPlace-v3/system_info.txt +8 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -6.90 +/- 1.58
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TQC** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **TQC** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "sb3_contrib.tqc.policies", "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f650db064d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f650daf3b40>"}, "verbose": 1, "policy_kwargs": {"net_arch": [512, 512, 512], "n_critics": 2, "n_quantiles": 25, "use_sde": false}, "num_timesteps": 5000000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694190359451961218, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAANAScPXIJZL2HwaM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAlG3fvaQmPbpkKK89lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAACYYrQ9DaFkvSpheD2LhIK+GZaFvbIBvL+Pi6M9NAScPXIJZL2HwaM8u31AJjrAV7e6Gx+3Rps7N/BLKq+unDs3Dyy2MeiREjrf9sawlGgOSwFLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.07617989 -0.05567307 0.01998974]]", "desired_goal": "[[-0.10909572 -0.00072155 0.08552626]]", "observation": "[[ 8.8078678e-02 -5.5817652e-02 6.0639538e-02 -2.5491747e-01\n -6.5227695e-02 -1.4688017e+00 7.9856031e-02 7.6179892e-02\n -5.5673070e-02 1.9989742e-02 6.6783778e-16 -1.2859755e-05\n -9.4835941e-06 1.1182221e-05 -1.5488388e-10 1.1182548e-05\n 5.3019060e-09 5.5911997e-04 -1.4476561e-09]]"}, "_episode_num": 491087, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwBAAAAAAAACMAWyUSwWMAXSUR0EEPMX3HJcPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0EEPMY3zcyndX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPMg28AaOdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPMnxdQfqdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPMzBxxT9dX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPM7cvM8pdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPNCLDye7dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPNNI2wV1dX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPNUZkTYedX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPNcijtXxdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPNiopQUIdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPNtEdmxudX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPN0rUsnRdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPN8jghr4dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPOHYPf8/dX2UKGgGR8AmAAAAAAAAaAdLDGgIR0EEPOUtpM6BdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPObWHUMHdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPOlEIHC5dX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPOrsenyedX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPO1NpudgdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPO5rPdEcdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPO/90ihWdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPPGetr9EdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPPQegctHdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0EEPPc/BeoldX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPPjhAOawdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPPt+tjkNdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPP0WtMfzdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPP7gcLjQdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPQEbnHNpdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPQSEHdGidX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPQZsfaHsdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPQjXw1BMdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPQqDlPrOdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPQuAJb+tdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPQ4B4D9wdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPQ+zPjXGdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPRHtzS1FdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPRQ4eT3ZdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPRbI0ALidX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPRjUb961dX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPRohjWkKdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPRsy7f52dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPR5Qj2SMdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPSCIB7u2dX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPSHaXa8IdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPSLrMcIadX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPSTRHww1dX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPSg81O0tdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPSpKk/KRdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPSx1Yp2EdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPS7QZn+RdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPTDUvPC3dX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPTIesYEXdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPTR2Mju8dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0EEPTS0Moc8dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPTdGUGFBdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPTnS5qdpdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPTy6Zpi7dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPT9jLSuydX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPUHmVJL/dX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPUP5JkGzdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPUXcFpwkdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPUgqUmlZdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPUqjUd7wdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPU2LwnYydX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPVCcGkeqdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPVNNA9mpdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPVYruYx+dX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPVhttIkJdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPVnbqIJrdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPVyhwEQodX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPV8QeFL4dX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPWC6jN6gdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPWJ1XeWOdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPWQxV6u5dX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPWYTyjHodX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPWgHnuAqdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPWnuJUHZdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPWxhrFfidX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPW5U+9rXdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0EEPXFOryUcdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPXNrZamodX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPXVODaoNdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPXaFsYVJdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPXj26shgdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPXvSv9tNdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPXzODzy0dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPX+WmpEQdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPYEiXY16dX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPYLrVe8gdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPYUYuTRqdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPYeTru6VdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPYl8YZVGdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPYuVk1/EdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPY4BzeXSdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0EEPZFEUKzBdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPZOXCCSSdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPZY+VLSNdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPZjLyUcGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="}, "_n_updates": 5001516, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQUaCDSIV2fe0769Qt4nn4PYwDaW5jlIoRSWn50UoQChOe8OgLlNXI4AB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 2048, "learning_starts": 100, "tau": 0.05, "gamma": 0.95, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.her.her_replay_buffer", "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ", "__init__": "<function HerReplayBuffer.__init__ at 0x7f652303b7f0>", "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7f652303b880>", "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7f652303b910>", "set_env": "<function HerReplayBuffer.set_env at 0x7f652303b9a0>", "add": "<function HerReplayBuffer.add at 0x7f652303ba30>", "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7f652303bac0>", "sample": "<function HerReplayBuffer.sample at 0x7f652303bb50>", "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7f652303bbe0>", "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7f652303bc70>", "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7f652303bd00>", "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7f652303bd90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f65230527c0>"}, "replay_buffer_kwargs": {"goal_selection_strategy": "future", "n_sampled_goal": 4}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "top_quantiles_to_drop_per_net": 2, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2Zkcy9taW5pY29uZGEzL2VudnMvcHkzMTBfdG9yY2gvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9mZHMvbWluaWNvbmRhMy9lbnZzL3B5MzEwX3RvcmNoL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.2.0-32-generic-x86_64-with-glibc2.35 # 32~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Aug 18 10:40:13 UTC 2", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.24.1", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07999489a541c16c5e8f368665562a61b41ee44d66f64b6ef71f95aa1ad14165
|
3 |
+
size 1039652
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -6.9, "std_reward": 1.57797338380595, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-10T23:30:11.209849"}
|
tqc-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b55898521787d79f364c0bb8b626cf2a4008134eaf1059ee9398e79e15ef7a6
|
3 |
+
size 24280461
|
tqc-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
tqc-PandaPickAndPlace-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7254293115b86bf53cc30fbe03ea9b73eec3077d3b7acdc78a233319f8018605
|
3 |
+
size 4349899
|
tqc-PandaPickAndPlace-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f2a51a069dd2785b82a5070854af728085cec5c87826d75d9f4f13ca06e76eb
|
3 |
+
size 8868949
|
tqc-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x7f650db064d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f650daf3b40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"net_arch": [
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512
|
17 |
+
],
|
18 |
+
"n_critics": 2,
|
19 |
+
"n_quantiles": 25,
|
20 |
+
"use_sde": false
|
21 |
+
},
|
22 |
+
"num_timesteps": 5000000,
|
23 |
+
"_total_timesteps": 5000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1694190359451961218,
|
28 |
+
"learning_rate": 0.001,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": null,
|
31 |
+
"_last_episode_starts": {
|
32 |
+
":type:": "<class 'numpy.ndarray'>",
|
33 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
34 |
+
},
|
35 |
+
"_last_original_obs": {
|
36 |
+
":type:": "<class 'collections.OrderedDict'>",
|
37 |
+
":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAANAScPXIJZL2HwaM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAlG3fvaQmPbpkKK89lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAACYYrQ9DaFkvSpheD2LhIK+GZaFvbIBvL+Pi6M9NAScPXIJZL2HwaM8u31AJjrAV7e6Gx+3Rps7N/BLKq+unDs3Dyy2MeiREjrf9sawlGgOSwFLE4aUaBJ0lFKUdS4=",
|
38 |
+
"achieved_goal": "[[ 0.07617989 -0.05567307 0.01998974]]",
|
39 |
+
"desired_goal": "[[-0.10909572 -0.00072155 0.08552626]]",
|
40 |
+
"observation": "[[ 8.8078678e-02 -5.5817652e-02 6.0639538e-02 -2.5491747e-01\n -6.5227695e-02 -1.4688017e+00 7.9856031e-02 7.6179892e-02\n -5.5673070e-02 1.9989742e-02 6.6783778e-16 -1.2859755e-05\n -9.4835941e-06 1.1182221e-05 -1.5488388e-10 1.1182548e-05\n 5.3019060e-09 5.5911997e-04 -1.4476561e-09]]"
|
41 |
+
},
|
42 |
+
"_episode_num": 491087,
|
43 |
+
"use_sde": false,
|
44 |
+
"sde_sample_freq": -1,
|
45 |
+
"_current_progress_remaining": 0.0,
|
46 |
+
"_stats_window_size": 100,
|
47 |
+
"ep_info_buffer": {
|
48 |
+
":type:": "<class 'collections.deque'>",
|
49 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwBAAAAAAAACMAWyUSwWMAXSUR0EEPMX3HJcPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0EEPMY3zcyndX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPMg28AaOdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPMnxdQfqdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPMzBxxT9dX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPM7cvM8pdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPNCLDye7dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPNNI2wV1dX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPNUZkTYedX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPNcijtXxdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPNiopQUIdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPNtEdmxudX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPN0rUsnRdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPN8jghr4dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPOHYPf8/dX2UKGgGR8AmAAAAAAAAaAdLDGgIR0EEPOUtpM6BdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPObWHUMHdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPOlEIHC5dX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPOrsenyedX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPO1NpudgdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPO5rPdEcdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPO/90ihWdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPPGetr9EdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPPQegctHdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0EEPPc/BeoldX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPPjhAOawdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPPt+tjkNdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPP0WtMfzdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPP7gcLjQdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPQEbnHNpdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPQSEHdGidX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPQZsfaHsdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPQjXw1BMdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPQqDlPrOdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPQuAJb+tdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPQ4B4D9wdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPQ+zPjXGdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPRHtzS1FdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPRQ4eT3ZdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPRbI0ALidX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPRjUb961dX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPRohjWkKdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPRsy7f52dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPR5Qj2SMdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPSCIB7u2dX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPSHaXa8IdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPSLrMcIadX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPSTRHww1dX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPSg81O0tdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPSpKk/KRdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPSx1Yp2EdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPS7QZn+RdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPTDUvPC3dX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPTIesYEXdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPTR2Mju8dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0EEPTS0Moc8dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPTdGUGFBdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPTnS5qdpdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPTy6Zpi7dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPT9jLSuydX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPUHmVJL/dX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPUP5JkGzdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPUXcFpwkdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPUgqUmlZdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPUqjUd7wdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPU2LwnYydX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPVCcGkeqdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPVNNA9mpdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPVYruYx+dX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPVhttIkJdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPVnbqIJrdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPVyhwEQodX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPV8QeFL4dX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPWC6jN6gdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPWJ1XeWOdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPWQxV6u5dX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPWYTyjHodX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPWgHnuAqdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPWnuJUHZdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPWxhrFfidX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPW5U+9rXdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0EEPXFOryUcdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPXNrZamodX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPXVODaoNdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPXaFsYVJdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPXj26shgdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPXvSv9tNdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0EEPXzODzy0dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPX+WmpEQdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0EEPYEiXY16dX2UKGgGR8AUAAAAAAAAaAdLBmgIR0EEPYLrVe8gdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPYUYuTRqdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPYeTru6VdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0EEPYl8YZVGdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0EEPYuVk1/EdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPY4BzeXSdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0EEPZFEUKzBdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPZOXCCSSdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0EEPZY+VLSNdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0EEPZjLyUcGdWUu"
|
50 |
+
},
|
51 |
+
"ep_success_buffer": {
|
52 |
+
":type:": "<class 'collections.deque'>",
|
53 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="
|
54 |
+
},
|
55 |
+
"_n_updates": 5001516,
|
56 |
+
"observation_space": {
|
57 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
58 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
59 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
60 |
+
"_shape": null,
|
61 |
+
"dtype": null,
|
62 |
+
"_np_random": null
|
63 |
+
},
|
64 |
+
"action_space": {
|
65 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
66 |
+
":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQUaCDSIV2fe0769Qt4nn4PYwDaW5jlIoRSWn50UoQChOe8OgLlNXI4AB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
67 |
+
"dtype": "float32",
|
68 |
+
"bounded_below": "[ True True True True]",
|
69 |
+
"bounded_above": "[ True True True True]",
|
70 |
+
"_shape": [
|
71 |
+
4
|
72 |
+
],
|
73 |
+
"low": "[-1. -1. -1. -1.]",
|
74 |
+
"high": "[1. 1. 1. 1.]",
|
75 |
+
"low_repr": "-1.0",
|
76 |
+
"high_repr": "1.0",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"buffer_size": 1000000,
|
81 |
+
"batch_size": 2048,
|
82 |
+
"learning_starts": 100,
|
83 |
+
"tau": 0.05,
|
84 |
+
"gamma": 0.95,
|
85 |
+
"gradient_steps": 1,
|
86 |
+
"optimize_memory_usage": false,
|
87 |
+
"replay_buffer_class": {
|
88 |
+
":type:": "<class 'abc.ABCMeta'>",
|
89 |
+
":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
|
90 |
+
"__module__": "stable_baselines3.her.her_replay_buffer",
|
91 |
+
"__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
|
92 |
+
"__init__": "<function HerReplayBuffer.__init__ at 0x7f652303b7f0>",
|
93 |
+
"__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7f652303b880>",
|
94 |
+
"__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7f652303b910>",
|
95 |
+
"set_env": "<function HerReplayBuffer.set_env at 0x7f652303b9a0>",
|
96 |
+
"add": "<function HerReplayBuffer.add at 0x7f652303ba30>",
|
97 |
+
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7f652303bac0>",
|
98 |
+
"sample": "<function HerReplayBuffer.sample at 0x7f652303bb50>",
|
99 |
+
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7f652303bbe0>",
|
100 |
+
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7f652303bc70>",
|
101 |
+
"_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7f652303bd00>",
|
102 |
+
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7f652303bd90>",
|
103 |
+
"__abstractmethods__": "frozenset()",
|
104 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f65230527c0>"
|
105 |
+
},
|
106 |
+
"replay_buffer_kwargs": {
|
107 |
+
"goal_selection_strategy": "future",
|
108 |
+
"n_sampled_goal": 4
|
109 |
+
},
|
110 |
+
"train_freq": {
|
111 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
112 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
113 |
+
},
|
114 |
+
"use_sde_at_warmup": false,
|
115 |
+
"target_entropy": -4.0,
|
116 |
+
"ent_coef": "auto",
|
117 |
+
"target_update_interval": 1,
|
118 |
+
"top_quantiles_to_drop_per_net": 2,
|
119 |
+
"lr_schedule": {
|
120 |
+
":type:": "<class 'function'>",
|
121 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2Zkcy9taW5pY29uZGEzL2VudnMvcHkzMTBfdG9yY2gvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9mZHMvbWluaWNvbmRhMy9lbnZzL3B5MzEwX3RvcmNoL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
122 |
+
},
|
123 |
+
"batch_norm_stats": [],
|
124 |
+
"batch_norm_stats_target": []
|
125 |
+
}
|
tqc-PandaPickAndPlace-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6b384b82787a3ec5324dc26767fdd711a192cb6c562ca06aa015e96e759db83
|
3 |
+
size 1507
|
tqc-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:856fd4af1b71a169b4370e3a8ecc8ae0913523549ccf153687d9170e8c815fd2
|
3 |
+
size 11041767
|
tqc-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64a18bc001e860d675afa44066b4742f2ef76f5e5b557131058947cdf8cc1ba6
|
3 |
+
size 747
|
tqc-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.2.0-32-generic-x86_64-with-glibc2.35 # 32~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Aug 18 10:40:13 UTC 2
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3df90f2fe77ecd5517d93e13a9159fdf4dd3dab6a8863ded0d8e9616c898cc7b
|
3 |
+
size 3214
|