BahAdoR0101 commited on
Commit
1087ceb
·
1 Parent(s): c35d48d

End of training

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 1.0
29
  - name: Recall
30
  type: recall
31
- value: 1.0
32
  - name: F1
33
  type: f1
34
- value: 1.0
35
  - name: Accuracy
36
  type: accuracy
37
- value: 1.0
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [dslim/bert-large-NER](https://huggingface.co/dslim/bert-large-NER) on the job-titles dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0027
48
- - Precision: 1.0
49
- - Recall: 1.0
50
- - F1: 1.0
51
- - Accuracy: 1.0
52
 
53
  ## Model description
54
 
@@ -77,10 +77,10 @@ The following hyperparameters were used during training:
77
 
78
  ### Training results
79
 
80
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
82
- | No log | 1.0 | 18 | 0.0139 | 1.0 | 1.0 | 1.0 | 1.0 |
83
- | No log | 2.0 | 36 | 0.0027 | 1.0 | 1.0 | 1.0 | 1.0 |
84
 
85
 
86
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9863945578231292
29
  - name: Recall
30
  type: recall
31
+ value: 0.9954233409610984
32
  - name: F1
33
  type: f1
34
+ value: 0.9908883826879271
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9953216374269006
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [dslim/bert-large-NER](https://huggingface.co/dslim/bert-large-NER) on the job-titles dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0080
48
+ - Precision: 0.9864
49
+ - Recall: 0.9954
50
+ - F1: 0.9909
51
+ - Accuracy: 0.9953
52
 
53
  ## Model description
54
 
 
77
 
78
  ### Training results
79
 
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 18 | 0.0232 | 0.9864 | 0.9954 | 0.9909 | 0.9953 |
83
+ | No log | 2.0 | 36 | 0.0080 | 0.9864 | 0.9954 | 0.9909 | 0.9953 |
84
 
85
 
86
  ### Framework versions