Update README.md
Browse files
README.md
CHANGED
@@ -19,13 +19,25 @@ It achieves the following results on the evaluation set:
|
|
19 |
- Uar: 0.8800
|
20 |
- Acc: 0.8897
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
## Model description
|
23 |
|
24 |
-
|
25 |
|
26 |
## Intended uses & limitations
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Training and evaluation data
|
31 |
|
|
|
19 |
- Uar: 0.8800
|
20 |
- Acc: 0.8897
|
21 |
|
22 |
+
For the test Set:
|
23 |
+
- UAR: 0.805
|
24 |
+
- 0.845
|
25 |
+
|
26 |
+
FI scores:
|
27 |
+
labels: ['anger', 'happiness', 'sadness', 'neutral']
|
28 |
+
Result per class (F1 score): [0.84, 0.364, 1.0, 1.0]
|
29 |
+
|
30 |
## Model description
|
31 |
|
32 |
+
This model is to predict one of four emotion categories: 'anger', 'happiness', 'sadness', 'neutral'
|
33 |
|
34 |
## Intended uses & limitations
|
35 |
|
36 |
+
How to use:
|
37 |
+
```
|
38 |
+
from transformers import pipeline
|
39 |
+
pipe = pipeline("audio-classification", model="Bagus/hubert_large_emodb")
|
40 |
+
pipe('file.wav')
|
41 |
|
42 |
## Training and evaluation data
|
43 |
|