File size: 11,120 Bytes
db31262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
<h1 align='center'>EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation Conditioning</h1>

<div align='center'>
    <a href='https://github.com/mengrang' target='_blank'>Rang Meng</a><sup></sup>&emsp;
    <a href='https://github.com/' target='_blank'>Xingyu Zhang</a><sup></sup>&emsp;
    <a href='https://lymhust.github.io/' target='_blank'>Yuming Li</a><sup></sup>&emsp;
    <a href='https://github.com/' target='_blank'>Chenguang Ma</a><sup></sup>
</div>


<div align='center'>
Terminal Technology Department, Alipay, Ant Group.
</div>
<br>
<div align='center'>
    <a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
    <a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
    <!--<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Demo-yellow'></a>-->
    <a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/ModelScope-Model-purple'></a>
    <!--<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/ModelScope-Demo-purple'></a>-->
    <a href='https://arxiv.org/abs/2411.10061'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
    <a href='https://github.com/antgroup/echomimic_v2/blob/main/assets/halfbody_demo/wechat_group.png'><img src='https://badges.aleen42.com/src/wechat.svg'></a>
</div>

## &#x1F680; EchoMimic Series
* EchoMimicV1: Lifelike Audio-Driven Portrait Animations through Editable Landmark Conditioning. [GitHub](https://github.com/antgroup/echomimic)
* EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation. [GitHub](https://github.com/antgroup/echomimic_v2)

## &#x1F4E3; Updates
* [2024.11.19] πŸ”₯ We release the EMTD dataset list and processing scripts.
* [2024.11.19] πŸ”₯ We release our [EchoMimicV2](https://github.com/antgroup/echomimic_v2) codes and models.
* [2024.11.15] πŸ”₯ Our [paper](https://arxiv.org/abs/2411.10061) is in public on arxiv.

## &#x1F305; Gallery
### Introduction
<table class="center">
<tr>
    <td width=50% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/f544dfc0-7d1a-4c2c-83c0-608f28ffda25" muted="false"></video>
    </td>
    <td width=50% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/7f626b65-725c-4158-a96b-062539874c63" muted="false"></video>
    </td>
</tr>
</table>

### English Driven Audio
<table class="center">
<tr>
    <td width=100% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/3d5ac52c-62e4-41bc-8b27-96f005bbd781" muted="false"></video>
    </td>
</tr>
</table>
<table class="center">
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/e8dd6919-665e-4343-931f-54c93dc49a7d" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/2a377391-a0d3-4a9d-8dde-cc59006e7e5b" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/462bf3bb-0af2-43e2-a2dc-559e79953f3c" muted="false"></video>
    </td>
</tr>
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/0e988e7f-6346-4b54-9061-9cfc7a80e9c8" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/56f739bd-afbf-4ed3-ab15-73a811c1bc46" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/1b2f7827-111d-4fc0-a773-e1731bba285d" muted="false"></video>
    </td>
</tr>
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/a76b6cc8-89b9-4f7e-b1ce-c85a657b6dc7" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/bf03b407-5033-4a30-aa59-b8680a515181" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/f98b3985-572c-499f-ae1a-1b9befe3086f" muted="false"></video>
    </td>
</tr>
</table>

### Chinese Driven Audio
<table class="center">
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/a940a332-2fd1-48e7-b3c4-f88f63fd1c9d" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/8f185829-c67f-45f4-846c-fcbe012c3acf" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/a49ab9be-f17b-41c5-96dd-20dc8d759b45" muted="false"></video>
    </td>
</tr>
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/1136ec68-a13c-4ee7-ab31-5621530bf9df" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/fc16d512-8806-4662-ae07-8fcf45c75a83" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/f8559cd1-f555-4781-9251-dfcef10b5b01" muted="false"></video>
    </td>
</tr>
<tr>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/c7473e3a-ab51-4ad5-be96-6c4691fc0c6e" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/ca69eac0-5126-41ee-8cac-c9722004d771" muted="false"></video>
    </td>
    <td width=30% style="border: none">
        <video controls loop src="https://github.com/user-attachments/assets/e66f1712-b66d-46b5-8bbd-811fbcfea4fd" muted="false"></video>
    </td>
</tr>
</table>

## βš’οΈ Installation
### Download the Codes

```bash
  git clone https://github.com/antgroup/echomimic_v2
  cd echomimic_v2
```

### Python Environment Setup

- Tested System Environment: Centos 7.2/Ubuntu 22.04, Cuda >= 11.7
- Tested GPUs: A100(80G) / RTX4090D (24G) / V100(16G)
- Tested Python Version: 3.8 / 3.10 / 3.11

Create conda environment (Recommended):

```bash
  conda create -n echomimic python=3.8
  conda activate echomimic
```

Install packages with `pip`
```bash
  pip install -r requirements.txt
```

### Download ffmpeg-static
Download and decompress [ffmpeg-static](https://www.johnvansickle.com/ffmpeg/old-releases/ffmpeg-4.4-amd64-static.tar.xz), then
```
export FFMPEG_PATH=/path/to/ffmpeg-4.4-amd64-static
```

### Download pretrained weights

```shell
git lfs install
git clone https://huggingface.co/BadToBest/EchoMimic pretrained_weights
```

The **pretrained_weights** is organized as follows.

```
./pretrained_weights/
β”œβ”€β”€ denoising_unet.pth
β”œβ”€β”€ reference_unet.pth
β”œβ”€β”€ motion_module.pth
β”œβ”€β”€ face_locator.pth
β”œβ”€β”€ sd-vae-ft-mse
β”‚   └── ...
β”œβ”€β”€ sd-image-variations-diffusers
β”‚   └── ...
└── audio_processor
    └── whisper_tiny.pt
```

In which **denoising_unet.pth** / **reference_unet.pth** / **motion_module.pth** / **face_locator.pth** are the main checkpoints of **EchoMimic**. Other models in this hub can be also downloaded from it's original hub, thanks to their brilliant works:
- [sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse)
- [sd-image-variations-diffusers](https://huggingface.co/lambdalabs/sd-image-variations-diffusers)
- [audio_processor(whisper)](https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt)

### Inference on Demo 
Run the python inference script:
```bash
python infer.py --config='./configs/prompts/infer.yaml'
```

### Inference on Your Own Case
**xxxx.ipynb** is a complete demo to generate animation video using the custom reference image, audio, and hand pose driven video.

### EMTD Dataset
Download dataset:
```bash
python ./EMTD_dataset/download.py
```
Slice dataset:
```bash
bash ./EMTD_dataset/slice.sh
```
Process dataset:
```bash
python ./EMTD_dataset/preprocess.py
```

## πŸ“ Release Plans

|  Status  | Milestone                                                                | ETA |
|:--------:|:-------------------------------------------------------------------------|:--:|
|    βœ…    | The inference source code of EchoMimicV2 meet everyone on GitHub   | 21st Nov, 2024 |
|    βœ…    | Pretrained models trained on English and Mandarin Chinese on HuggingFace | 21st Nov, 2024 |
|    βœ…    | Pretrained models trained on English and Mandarin Chinese on ModelScope   | 21st Nov, 2024 |
|    βœ…    | EMTD dataset list and processing scripts                | 21st Nov, 2024 |
|    πŸš€    | Accelerated models to be released                                        | TBD |
|    πŸš€    | Online Demo on ModelScope to be released            | TBD |
|    πŸš€    | Online Demo on HuggingFace to be released         | TBD |

## βš–οΈ Disclaimer
This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content. Users are solely liable for their actions while using the generative model. The project contributors have no legal affiliation with, nor accountability for, users' behaviors. It is imperative to use the generative model responsibly, adhering to both ethical and legal standards.

## πŸ™πŸ» Acknowledgements

We would like to thank the contributors to the [MimicMotion](https://github.com/Tencent/MimicMotion) and [Moore-AnimateAnyone](https://github.com/MooreThreads/Moore-AnimateAnyone) repositories, for their open research and exploration. 

We are also grateful to [CyberHost](https://cyberhost.github.io/) and [Vlogger](https://enriccorona.github.io/vlogger/) for their outstanding work in the area of audio-driven human animation.

If we missed any open-source projects or related articles, we would like to complement the acknowledgement of this specific work immediately.

## &#x1F4D2; Citation

If you find our work useful for your research, please consider citing the paper :

```
@misc{meng2024echomimic,
  title={EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation},
  author={Rang Meng, Xingyu Zhang, Yuming Li, Chenguang Ma},
  year={2024},
  eprint={2411.10061},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
```

## &#x1F31F; Star History
[![Star History Chart](https://api.star-history.com/svg?repos=antgroup/echomimic_v2&type=Date)](https://star-history.com/#antgroup/echomimic_v2&Date)