File size: 11,120 Bytes
db31262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
<h1 align='center'>EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation Conditioning</h1>
<div align='center'>
<a href='https://github.com/mengrang' target='_blank'>Rang Meng</a><sup></sup> 
<a href='https://github.com/' target='_blank'>Xingyu Zhang</a><sup></sup> 
<a href='https://lymhust.github.io/' target='_blank'>Yuming Li</a><sup></sup> 
<a href='https://github.com/' target='_blank'>Chenguang Ma</a><sup></sup>
</div>
<div align='center'>
Terminal Technology Department, Alipay, Ant Group.
</div>
<br>
<div align='center'>
<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
<!--<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Demo-yellow'></a>-->
<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/ModelScope-Model-purple'></a>
<!--<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/ModelScope-Demo-purple'></a>-->
<a href='https://arxiv.org/abs/2411.10061'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
<a href='https://github.com/antgroup/echomimic_v2/blob/main/assets/halfbody_demo/wechat_group.png'><img src='https://badges.aleen42.com/src/wechat.svg'></a>
</div>
## 🚀 EchoMimic Series
* EchoMimicV1: Lifelike Audio-Driven Portrait Animations through Editable Landmark Conditioning. [GitHub](https://github.com/antgroup/echomimic)
* EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation. [GitHub](https://github.com/antgroup/echomimic_v2)
## 📣 Updates
* [2024.11.19] π₯ We release the EMTD dataset list and processing scripts.
* [2024.11.19] π₯ We release our [EchoMimicV2](https://github.com/antgroup/echomimic_v2) codes and models.
* [2024.11.15] π₯ Our [paper](https://arxiv.org/abs/2411.10061) is in public on arxiv.
## 🌅 Gallery
### Introduction
<table class="center">
<tr>
<td width=50% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/f544dfc0-7d1a-4c2c-83c0-608f28ffda25" muted="false"></video>
</td>
<td width=50% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/7f626b65-725c-4158-a96b-062539874c63" muted="false"></video>
</td>
</tr>
</table>
### English Driven Audio
<table class="center">
<tr>
<td width=100% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/3d5ac52c-62e4-41bc-8b27-96f005bbd781" muted="false"></video>
</td>
</tr>
</table>
<table class="center">
<tr>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/e8dd6919-665e-4343-931f-54c93dc49a7d" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/2a377391-a0d3-4a9d-8dde-cc59006e7e5b" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/462bf3bb-0af2-43e2-a2dc-559e79953f3c" muted="false"></video>
</td>
</tr>
<tr>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/0e988e7f-6346-4b54-9061-9cfc7a80e9c8" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/56f739bd-afbf-4ed3-ab15-73a811c1bc46" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/1b2f7827-111d-4fc0-a773-e1731bba285d" muted="false"></video>
</td>
</tr>
<tr>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/a76b6cc8-89b9-4f7e-b1ce-c85a657b6dc7" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/bf03b407-5033-4a30-aa59-b8680a515181" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/f98b3985-572c-499f-ae1a-1b9befe3086f" muted="false"></video>
</td>
</tr>
</table>
### Chinese Driven Audio
<table class="center">
<tr>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/a940a332-2fd1-48e7-b3c4-f88f63fd1c9d" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/8f185829-c67f-45f4-846c-fcbe012c3acf" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/a49ab9be-f17b-41c5-96dd-20dc8d759b45" muted="false"></video>
</td>
</tr>
<tr>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/1136ec68-a13c-4ee7-ab31-5621530bf9df" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/fc16d512-8806-4662-ae07-8fcf45c75a83" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/f8559cd1-f555-4781-9251-dfcef10b5b01" muted="false"></video>
</td>
</tr>
<tr>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/c7473e3a-ab51-4ad5-be96-6c4691fc0c6e" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/ca69eac0-5126-41ee-8cac-c9722004d771" muted="false"></video>
</td>
<td width=30% style="border: none">
<video controls loop src="https://github.com/user-attachments/assets/e66f1712-b66d-46b5-8bbd-811fbcfea4fd" muted="false"></video>
</td>
</tr>
</table>
## βοΈ Installation
### Download the Codes
```bash
git clone https://github.com/antgroup/echomimic_v2
cd echomimic_v2
```
### Python Environment Setup
- Tested System Environment: Centos 7.2/Ubuntu 22.04, Cuda >= 11.7
- Tested GPUs: A100(80G) / RTX4090D (24G) / V100(16G)
- Tested Python Version: 3.8 / 3.10 / 3.11
Create conda environment (Recommended):
```bash
conda create -n echomimic python=3.8
conda activate echomimic
```
Install packages with `pip`
```bash
pip install -r requirements.txt
```
### Download ffmpeg-static
Download and decompress [ffmpeg-static](https://www.johnvansickle.com/ffmpeg/old-releases/ffmpeg-4.4-amd64-static.tar.xz), then
```
export FFMPEG_PATH=/path/to/ffmpeg-4.4-amd64-static
```
### Download pretrained weights
```shell
git lfs install
git clone https://huggingface.co/BadToBest/EchoMimic pretrained_weights
```
The **pretrained_weights** is organized as follows.
```
./pretrained_weights/
βββ denoising_unet.pth
βββ reference_unet.pth
βββ motion_module.pth
βββ face_locator.pth
βββ sd-vae-ft-mse
β βββ ...
βββ sd-image-variations-diffusers
β βββ ...
βββ audio_processor
βββ whisper_tiny.pt
```
In which **denoising_unet.pth** / **reference_unet.pth** / **motion_module.pth** / **face_locator.pth** are the main checkpoints of **EchoMimic**. Other models in this hub can be also downloaded from it's original hub, thanks to their brilliant works:
- [sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse)
- [sd-image-variations-diffusers](https://huggingface.co/lambdalabs/sd-image-variations-diffusers)
- [audio_processor(whisper)](https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt)
### Inference on Demo
Run the python inference script:
```bash
python infer.py --config='./configs/prompts/infer.yaml'
```
### Inference on Your Own Case
**xxxx.ipynb** is a complete demo to generate animation video using the custom reference image, audio, and hand pose driven video.
### EMTD Dataset
Download dataset:
```bash
python ./EMTD_dataset/download.py
```
Slice dataset:
```bash
bash ./EMTD_dataset/slice.sh
```
Process dataset:
```bash
python ./EMTD_dataset/preprocess.py
```
## π Release Plans
| Status | Milestone | ETA |
|:--------:|:-------------------------------------------------------------------------|:--:|
| β
| The inference source code of EchoMimicV2 meet everyone on GitHub | 21st Nov, 2024 |
| β
| Pretrained models trained on English and Mandarin Chinese on HuggingFace | 21st Nov, 2024 |
| β
| Pretrained models trained on English and Mandarin Chinese on ModelScope | 21st Nov, 2024 |
| β
| EMTD dataset list and processing scripts | 21st Nov, 2024 |
| π | Accelerated models to be released | TBD |
| π | Online Demo on ModelScope to be released | TBD |
| π | Online Demo on HuggingFace to be released | TBD |
## βοΈ Disclaimer
This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content. Users are solely liable for their actions while using the generative model. The project contributors have no legal affiliation with, nor accountability for, users' behaviors. It is imperative to use the generative model responsibly, adhering to both ethical and legal standards.
## ππ» Acknowledgements
We would like to thank the contributors to the [MimicMotion](https://github.com/Tencent/MimicMotion) and [Moore-AnimateAnyone](https://github.com/MooreThreads/Moore-AnimateAnyone) repositories, for their open research and exploration.
We are also grateful to [CyberHost](https://cyberhost.github.io/) and [Vlogger](https://enriccorona.github.io/vlogger/) for their outstanding work in the area of audio-driven human animation.
If we missed any open-source projects or related articles, we would like to complement the acknowledgement of this specific work immediately.
## 📒 Citation
If you find our work useful for your research, please consider citing the paper :
```
@misc{meng2024echomimic,
title={EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation},
author={Rang Meng, Xingyu Zhang, Yuming Li, Chenguang Ma},
year={2024},
eprint={2411.10061},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## 🌟 Star History
[![Star History Chart](https://api.star-history.com/svg?repos=antgroup/echomimic_v2&type=Date)](https://star-history.com/#antgroup/echomimic_v2&Date) |