File size: 10,358 Bytes
9016b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "WE5GJ6s7y0Xo"
},
"source": [
"## Eluwa training notebook\n",
"\n",
"This is a straightforward mash-up of two sources - [a tutorial notebook on retraining OPT](https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o) and settings + data from the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) github."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TfBzP8gWzkpv"
},
"source": [
"### Install requirements\n",
"\n",
"First, run the cells below to install the requirements:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "otj46qRbtpnd"
},
"outputs": [],
"source": [
"!pip install -q bitsandbytes datasets accelerate loralib transformers peft\n",
"import os\n",
"import torch\n",
"import torch.nn as nn\n",
"import bitsandbytes as bnb\n",
"from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FOtwYRI3zzXI"
},
"source": [
"### Model loading\n",
"\n",
"Here let's load the `opt` model and tokenizer from their huggingface link. The model is loaded in [8bit](https://) mode. This drastically reduces the amount of memory required to run the model. Without it, any attempt to train models above a certain size (say, something like `pythia1b`) will max out the available RAM/VRAM and get your nowhere. To understand what's going on with that `8bit` flag, it might be useful to read [this first](https://https://huggingface.co/blog/hf-bitsandbytes-integration)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cg3fiQOvmI3Q"
},
"outputs": [],
"source": [
"model = AutoModelForCausalLM.from_pretrained(\n",
" \"facebook/opt-1.3b\", \n",
" load_in_8bit=True, \n",
" device_map='auto',\n",
")\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"facebook/opt-1.3b\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QdjWif4CVXR6"
},
"source": [
"### Training\n",
"Here we load the alpaca dataset. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "AQ_HCYruWIHU"
},
"outputs": [],
"source": [
"import transformers\n",
"from datasets import load_dataset\n",
"data = load_dataset(\"tatsu-lab/alpaca\")\n",
"data = data.map(lambda samples: tokenizer(samples['instruction']), batched=True)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9fTSZntA1iUG"
},
"source": [
"### Post-processing on the model\n",
"\n",
"We need to apply some post-processing on the 8-bit model to enable training, let's freeze all our layers, and cast the layer-norm in `float32` for stability. We also cast the output of the last layer in `float32` for the same reasons."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "T-gy-LxM0yAi"
},
"outputs": [],
"source": [
"for param in model.parameters():\n",
" param.requires_grad = False # freeze the model - train adapters later\n",
" if param.ndim == 1:\n",
" # cast the small parameters (e.g. layernorm) to fp32 for stability\n",
" param.data = param.data.to(torch.float32)\n",
"\n",
"model.gradient_checkpointing_enable() # reduce number of stored activations\n",
"model.enable_input_require_grads()\n",
"\n",
"class CastOutputToFloat(nn.Sequential):\n",
" def forward(self, x): return super().forward(x).to(torch.float32)\n",
"model.lm_head = CastOutputToFloat(model.lm_head)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KwOTr7B3NlM3"
},
"source": [
"### Apply LoRA\n",
"\n",
"A LoRA (Low-Rank Adapter) is a way of training a portion of a model, instead of training the entire model. In inference, the LoRA then fits 'on top' of the existing model to modify its outputs. It takes only a fraction of the memory required to store. I highly recommend [reading the paper](https://arxiv.org/pdf/2106.09685.pdf): without it we'd be stuck retraining entire models from scratch every time. \n",
"\n",
"This magic happens with `peft`! Let's load a `PeftModel` and specify that we are going to use low-rank adapters (LoRA) using `get_peft_model` utility function from `peft`. This code will output how many parameters we can actually train here with this method. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4W1j6lxaNnxC"
},
"outputs": [],
"source": [
"def print_trainable_parameters(model):\n",
" \"\"\"\n",
" Prints the number of trainable parameters in the model.\n",
" \"\"\"\n",
" trainable_params = 0\n",
" all_param = 0\n",
" for _, param in model.named_parameters():\n",
" all_param += param.numel()\n",
" if param.requires_grad:\n",
" trainable_params += param.numel()\n",
" print(\n",
" f\"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}\"\n",
" )\n",
"\n",
"from peft import LoraConfig, get_peft_model \n",
"\n",
"config = LoraConfig(\n",
" r=16,\n",
" lora_alpha=32,\n",
" target_modules=[\"q_proj\", \"v_proj\"],\n",
" lora_dropout=0.05,\n",
" bias=\"none\",\n",
" task_type=\"CAUSAL_LM\"\n",
")\n",
"\n",
"model = get_peft_model(model, config)\n",
"print_trainable_parameters(model)\n"
]
},
{
"cell_type": "markdown",
"source": [
"### Defining the training arguments\n",
"The `trainer` function here specifies important things. [The documentation](https://huggingface.co/transformers/v3.0.2/main_classes/trainer.html#transformers.TrainingArguments) covers all these parameters and then some. \n",
"Things you typically want to pay attention to:\n",
" is the \n",
"\n",
"* `learning rate` (3e-4 is commonly seen, although that may have been a joke by Karpathy) \n",
"* `num_train_epochs`: a measure of how long you want to train your model for. Each time a dataset passes through an algorithm, it is said to have completed an epoch. `max_steps ` is an alternate way of controlling how long you're going to train for. Helps to comment out one if you're using the other.\n",
"\n"
],
"metadata": {
"id": "JdEnTEr-_yWN"
}
},
{
"cell_type": "code",
"source": [
"\n",
"trainer = transformers.Trainer(\n",
" model=model, \n",
" train_dataset=data['train'],\n",
" args=transformers.TrainingArguments(\n",
" per_device_train_batch_size=8, \n",
" gradient_accumulation_steps=4,\n",
" warmup_steps=100, \n",
" num_train_epochs=1,\n",
" #max_steps=1000, \n",
" learning_rate=2e-4, \n",
" fp16=True,\n",
" logging_steps=10, \n",
" output_dir='outputs'\n",
" ),\n",
" data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)\n",
")\n",
"model.config.use_cache = False # silence the warnings. Please re-enable for inference!"
],
"metadata": {
"id": "5FmaIP5T_xqW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"###The actual training"
],
"metadata": {
"id": "Mmzb7aNRBN6V"
}
},
{
"cell_type": "markdown",
"source": [
"I keep `resume_from_checkpoint = False` because the function can't seem to handle quantized models very well. This does mean that you're starting from scratch every time. Colab has an annoying habit of restarting runtimes out of nowhere, so if you're training for a long time, say a prayer before you press the button."
],
"metadata": {
"id": "AgQ_A39WBRgN"
}
},
{
"cell_type": "code",
"source": [
"trainer.train(resume_from_checkpoint = False)"
],
"metadata": {
"id": "_5GaD7dMfMR3"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Saving your LoRA\n",
"\n",
"Important! Remember to run this so you can save and download your LoRa. The training process will generate .bin files, but they aren't the models you're looking for.\n",
"\n"
],
"metadata": {
"id": "GXMR53MrBgAn"
}
},
{
"cell_type": "code",
"source": [
"model.save_pretrained(\"lora-eluwa-opt\")"
],
"metadata": {
"id": "iQDSGcfQehDc"
},
"execution_count": null,
"outputs": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"machine_shape": "hm",
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |