File size: 1,986 Bytes
2f7832a
 
 
 
 
 
 
 
 
 
d2dc35f
2f7832a
 
d2dc35f
2f7832a
fe5cb16
2f7832a
 
fe5cb16
 
2f7832a
 
 
 
 
 
 
 
 
d2dc35f
2f7832a
d2dc35f
2f7832a
 
 
 
 
 
d2dc35f
 
 
fe5cb16
d2dc35f
 
 
 
 
 
fe5cb16
d2dc35f
 
fe5cb16
d2dc35f
 
 
 
 
 
 
fe5cb16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

---
tags:
- image-classification
- ecology
- fungi
- FGVC
library_name: DanishFungi
license: cc-by-nc-4.0
---
# Model card for BVRA/inception_v4.in1k_ft_df20m_299

## Model Details
- **Model Type:** Danish Fungi Classification 
- **Model Stats:**
  - Params (M): 41.4M
  - Image size: 299 x 299
- **Papers:**
  - **Original:** Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning --> https://arxiv.org/pdf/1602.07261
  - **Train Dataset:** DF20M --> https://github.com/BohemianVRA/DanishFungiDataset/

## Model Usage
### Image Embeddings
```python
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:BVRA/inception_v4.in1k_ft_df20m_299", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize((299, 299)), 
                              T.ToTensor(), 
                              T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) 
img = Image.open(PATH_TO_YOUR_IMAGE)
output = model(train_transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor
```

## Citation 
```bibtex
@InProceedings{Picek_2022_WACV,
    author    = {Picek, Lukas and Sulc, Milan and Matas, Jiri and Jeppesen, Thomas S. and Heilmann-Clausen, Jacob and L{e}ss{\o}e, Thomas and Fr{\o}slev, Tobias},
    title     = {Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2022},
    pages     = {1525-1535}
}

@article{picek2022automatic,
  title={Automatic Fungi Recognition: Deep Learning Meets Mycology},
  author={Picek, Lukas and Sulc, Milan and Matas, Jiri and Heilmann-Clausen, Jacob and Jeppesen, Thomas S and Lind, Emil},
  journal={Sensors},
  volume={22},
  number={2},
  pages={633},
  year={2022},
  publisher={Multidisciplinary Digital Publishing Institute}
}
```