BVRA
/

cermakvo commited on
Commit
ff9bed1
·
1 Parent(s): 3c9fe07

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -7,20 +7,21 @@ tags:
7
  library_name: wildlife-datasets
8
  license: cc-by-nc-4.0
9
  ---
10
- # Model card for MegaDescriptor-B-224
11
 
12
- A Swin-S image feature model. Superwisely pre-trained on animal re-identification datasets.
13
 
14
 
15
  ## Model Details
16
  - **Model Type:** Animal re-identification / feature backbone
17
  - **Model Stats:**
18
- - Params (M): ??
19
  - Image size: 224 x 224
 
20
  - **Papers:**
21
  - Swin Transformer: Hierarchical Vision Transformer using Shifted Windows --> https://arxiv.org/abs/2103.14030
22
  - **Original:** ??
23
- - **Pretrain Dataset:** All available re-identification datasets --> TBD
24
 
25
  ## Model Usage
26
  ### Image Embeddings
@@ -33,7 +34,7 @@ import torchvision.transforms as T
33
  from PIL import Image
34
  from urllib.request import urlopen
35
 
36
- model = timm.create_model("hf-hub:BVRA/wildlife-mega", pretrained=True)
37
  model = model.eval()
38
 
39
  train_transforms = T.Compose([T.Resize(224),
 
7
  library_name: wildlife-datasets
8
  license: cc-by-nc-4.0
9
  ---
10
+ # Model card for MegaDescriptor-T-224
11
 
12
+ A Swin-T image feature model. Superwisely pre-trained on animal re-identification datasets.
13
 
14
 
15
  ## Model Details
16
  - **Model Type:** Animal re-identification / feature backbone
17
  - **Model Stats:**
18
+ - Params (M): 28.3
19
  - Image size: 224 x 224
20
+ - Architecture: swin_tiny_patch4_window7_224
21
  - **Papers:**
22
  - Swin Transformer: Hierarchical Vision Transformer using Shifted Windows --> https://arxiv.org/abs/2103.14030
23
  - **Original:** ??
24
+ - **Pretrain Dataset:** All available re-identification datasets --> https://github.com/WildlifeDatasets/wildlife-datasets
25
 
26
  ## Model Usage
27
  ### Image Embeddings
 
34
  from PIL import Image
35
  from urllib.request import urlopen
36
 
37
+ model = timm.create_model("hf-hub:BVRA/MegaDescriptor-T-224", pretrained=True)
38
  model = model.eval()
39
 
40
  train_transforms = T.Compose([T.Resize(224),