Update README.md
Browse files
README.md
CHANGED
@@ -7,7 +7,7 @@ tags:
|
|
7 |
library_name: wildlife-datasets
|
8 |
license: cc-by-nc-4.0
|
9 |
---
|
10 |
-
# Model card for MegaDescriptor-
|
11 |
|
12 |
A Swin-L image feature model. Superwisely pre-trained on animal re-identification datasets.
|
13 |
|
@@ -15,12 +15,13 @@ A Swin-L image feature model. Superwisely pre-trained on animal re-identificatio
|
|
15 |
## Model Details
|
16 |
- **Model Type:** Animal re-identification / feature backbone
|
17 |
- **Model Stats:**
|
18 |
-
- Params (M):
|
19 |
- Image size: 384 x 384
|
|
|
20 |
- **Papers:**
|
21 |
- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows --> https://arxiv.org/abs/2103.14030
|
22 |
- **Original:** ??
|
23 |
-
- **Pretrain Dataset:** All available re-identification datasets -->
|
24 |
|
25 |
## Model Usage
|
26 |
### Image Embeddings
|
@@ -33,10 +34,10 @@ import torchvision.transforms as T
|
|
33 |
from PIL import Image
|
34 |
from urllib.request import urlopen
|
35 |
|
36 |
-
model = timm.create_model("hf-hub:BVRA/
|
37 |
model = model.eval()
|
38 |
|
39 |
-
train_transforms = T.Compose([T.Resize(
|
40 |
T.ToTensor(),
|
41 |
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
42 |
|
|
|
7 |
library_name: wildlife-datasets
|
8 |
license: cc-by-nc-4.0
|
9 |
---
|
10 |
+
# Model card for MegaDescriptor-L-384
|
11 |
|
12 |
A Swin-L image feature model. Superwisely pre-trained on animal re-identification datasets.
|
13 |
|
|
|
15 |
## Model Details
|
16 |
- **Model Type:** Animal re-identification / feature backbone
|
17 |
- **Model Stats:**
|
18 |
+
- Params (M): 228.8
|
19 |
- Image size: 384 x 384
|
20 |
+
- Architecture: swin_large_patch4_window12_384
|
21 |
- **Papers:**
|
22 |
- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows --> https://arxiv.org/abs/2103.14030
|
23 |
- **Original:** ??
|
24 |
+
- **Pretrain Dataset:** All available re-identification datasets --> https://github.com/WildlifeDatasets/wildlife-datasets
|
25 |
|
26 |
## Model Usage
|
27 |
### Image Embeddings
|
|
|
34 |
from PIL import Image
|
35 |
from urllib.request import urlopen
|
36 |
|
37 |
+
model = timm.create_model("hf-hub:BVRA/MegaDescriptor-L-384", pretrained=True)
|
38 |
model = model.eval()
|
39 |
|
40 |
+
train_transforms = T.Compose([T.Resize(size=(384, 384)),
|
41 |
T.ToTensor(),
|
42 |
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
43 |
|