PyTorch
ONNX
vocoder
vocos
hifigan
tts
mel
File size: 2,545 Bytes
f5c97ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# pytorch_lightning==1.8.6
seed_everything: 4444

data:
  class_path: vocos.dataset.VocosDataModule
  init_args:
    train_params:
      filelist_path: ???
      sampling_rate: 22050
      num_samples: 16384
      batch_size: 16
      num_workers: 8

    val_params:
      filelist_path: ???
      sampling_rate: 22050
      num_samples: 48384
      batch_size: 16
      num_workers: 8

model:
  class_path: vocos.experiment.VocosExp
  init_args:
    sample_rate: 22050
    initial_learning_rate: 1e-3
    mel_loss_coeff: 45
    mrd_loss_coeff: 0.1 # original value 0.1
    num_warmup_steps: 500 # Optimizers warmup steps
    pretrain_mel_steps: 0  # 0 means GAN objective from the first iteration

    # automatic evaluation
    evaluate_utmos: true
    evaluate_pesq: true
    evaluate_periodicty: true

feature_extractor:
  class_path: vocos.feature_extractors.MelSpectrogramFeatures
  init_args:
    sample_rate: 22050
    n_fft: 1024
    hop_length: 256
    n_mels: 80
    padding: same
    f_min: 0
    f_max: 8000
    norm: "slaney"
    mel_scale: "slaney"
    clip_val: 1e-5


backbone:
  class_path: vocos.models.VocosBackbone
  init_args:
    input_channels: 80
    dim: 512
    intermediate_dim: 1536
    num_layers: 8

head:
  class_path: vocos.heads.WaveNextHead
  init_args:
    dim: 512
    n_fft: 1024
    hop_length: 256
    padding: same
    
melspec_loss:
  class_path: vocos.loss.MelSpecReconstructionLoss
  init_args:
    sample_rate: 22050
    n_fft: 1024
    hop_length: 256
    n_mels: 128
    f_min: 0
    f_max: 11000
    norm: "slaney"
    mel_scale: "slaney"
    clip_val: 1e-5


trainer:
  logger:
    class_path: pytorch_lightning.loggers.TensorBoardLogger
    init_args:
      save_dir: ???
  callbacks:
    - class_path: pytorch_lightning.callbacks.LearningRateMonitor
    - class_path: pytorch_lightning.callbacks.ModelSummary
      init_args:
        max_depth: 2
    - class_path: pytorch_lightning.callbacks.ModelCheckpoint
      init_args:
        monitor: val_loss
        filename: vocos_checkpoint_{epoch}_{step}_{val_loss:.4f}
        save_top_k: 3
        save_last: true
    - class_path: vocos.helpers.GradNormCallback

  # Lightning calculates max_steps across all optimizer steps (rather than number of batches)
  # This equals to 1M steps per generator and 1M per discriminator
  max_steps: 2000000
  # You might want to limit val batches when evaluating all the metrics, as they are time-consuming
  limit_val_batches: 50
  accelerator: gpu
  strategy: ddp
  devices: [0]
  log_every_n_steps: 250