Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,126 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- flair
|
5 |
+
- token-classification
|
6 |
+
- sequence-tagger-model
|
7 |
+
language: es
|
8 |
+
datasets:
|
9 |
+
- conll2003
|
10 |
+
- BSC-LT/NextProcurement-NER-Spanish-UTE-Company-annotated
|
11 |
+
widget:
|
12 |
+
- text: "PODACESA OBRAS Y SERVICIOS, S.A, y ECR INFRAESTRUCTURAS Y SERVICIOS HIDRÁULICOS S.L., constituidos en UTE PODACESA-ECR realizan la siguiente oferta:"
|
13 |
+
---
|
14 |
+
## Recognition of UTEs and company mentions in Flair
|
15 |
+
|
16 |
+
This is a model trained using [Flair](https://github.com/flairNLP/flair/) to recognise mentions of UTEs (Unión Temporal de Empresas) and companies in public tenders.
|
17 |
+
|
18 |
+
It is a finetune of the flair/ner-spanish-large model (retrained from scratch to include additional tags).
|
19 |
+
|
20 |
+
```
|
21 |
+
Results:
|
22 |
+
- F-score (micro) 0.7431
|
23 |
+
- F-score (macro) 0.7429
|
24 |
+
- Accuracy 0.5944
|
25 |
+
|
26 |
+
By class:
|
27 |
+
precision recall f1-score support
|
28 |
+
|
29 |
+
UTE 0.7568 0.7887 0.7724 71
|
30 |
+
SINGLE_COMPANY 0.6538 0.7846 0.7133 65
|
31 |
+
|
32 |
+
micro avg 0.7039 0.7868 0.7431 136
|
33 |
+
macro avg 0.7053 0.7867 0.7429 136
|
34 |
+
weighted avg 0.7076 0.7868 0.7442 136
|
35 |
+
```
|
36 |
+
|
37 |
+
Based on document-level XLM-R embeddings and [FLERT](https://arxiv.org/pdf/2011.06993v1.pdf/).
|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
### Demo: How to use in Flair
|
42 |
+
|
43 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
44 |
+
|
45 |
+
```python
|
46 |
+
from flair.data import Sentence
|
47 |
+
from flair.models import SequenceTagger
|
48 |
+
# load tagger
|
49 |
+
tagger = SequenceTagger.load("BSC-LT/NextProcurement-NER-Spanish-UTE-Company")
|
50 |
+
# make example sentence
|
51 |
+
sentence = Sentence("PODACESA OBRAS Y SERVICIOS, S.A, y ECR INFRAESTRUCTURAS Y SERVICIOS HIDRÁULICOS S.L., constituidos en UTE PODACESA-ECR realizan la siguiente oferta:")
|
52 |
+
# predict NER tags
|
53 |
+
tagger.predict(sentence)
|
54 |
+
# print sentence
|
55 |
+
print(sentence)
|
56 |
+
# print predicted NER spans
|
57 |
+
print('The following NER tags are found:')
|
58 |
+
# iterate over entities and print
|
59 |
+
for entity in sentence.get_spans('ner'):
|
60 |
+
print(entity)
|
61 |
+
```
|
62 |
+
|
63 |
+
This yields the following output (**TODO: update**):
|
64 |
+
```
|
65 |
+
Span [1,2]: "George Washington" [− Labels: PER (1.0)]
|
66 |
+
Span [5]: "Washington" [− Labels: LOC (1.0)]
|
67 |
+
```
|
68 |
+
|
69 |
+
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington fue a Washington*".
|
70 |
+
|
71 |
+
|
72 |
+
---
|
73 |
+
|
74 |
+
### Training: Script to train this model
|
75 |
+
|
76 |
+
The following Flair script was used to train this model (**TODO: update**):
|
77 |
+
|
78 |
+
```python
|
79 |
+
import torch
|
80 |
+
# 1. get the corpus
|
81 |
+
from flair.datasets import CONLL_03_SPANISH
|
82 |
+
corpus = CONLL_03_SPANISH()
|
83 |
+
# 2. what tag do we want to predict?
|
84 |
+
tag_type = 'ner'
|
85 |
+
# 3. make the tag dictionary from the corpus
|
86 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
87 |
+
# 4. initialize fine-tuneable transformer embeddings WITH document context
|
88 |
+
from flair.embeddings import TransformerWordEmbeddings
|
89 |
+
embeddings = TransformerWordEmbeddings(
|
90 |
+
model='xlm-roberta-large',
|
91 |
+
layers="-1",
|
92 |
+
subtoken_pooling="first",
|
93 |
+
fine_tune=True,
|
94 |
+
use_context=True,
|
95 |
+
)
|
96 |
+
# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
|
97 |
+
from flair.models import SequenceTagger
|
98 |
+
tagger = SequenceTagger(
|
99 |
+
hidden_size=256,
|
100 |
+
embeddings=embeddings,
|
101 |
+
tag_dictionary=tag_dictionary,
|
102 |
+
tag_type='ner',
|
103 |
+
use_crf=False,
|
104 |
+
use_rnn=False,
|
105 |
+
reproject_embeddings=False,
|
106 |
+
)
|
107 |
+
# 6. initialize trainer with AdamW optimizer
|
108 |
+
from flair.trainers import ModelTrainer
|
109 |
+
trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
|
110 |
+
# 7. run training with XLM parameters (20 epochs, small LR)
|
111 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
112 |
+
trainer.train('resources/taggers/ner-spanish-large',
|
113 |
+
learning_rate=5.0e-6,
|
114 |
+
mini_batch_size=4,
|
115 |
+
mini_batch_chunk_size=1,
|
116 |
+
max_epochs=20,
|
117 |
+
scheduler=OneCycleLR,
|
118 |
+
embeddings_storage_mode='none',
|
119 |
+
weight_decay=0.,
|
120 |
+
)
|
121 |
+
)
|
122 |
+
```
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
---
|