File size: 5,478 Bytes
9a6080b
 
 
 
 
 
f44a0ea
 
 
 
4a8cba0
 
f44a0ea
a50acce
f44a0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a6080b
 
 
 
 
fc9bdd9
 
 
9a6080b
1cd271d
 
9a6080b
 
 
 
686386f
9a6080b
fc9bdd9
9a6080b
fc9bdd9
9a6080b
fc9bdd9
 
 
 
 
 
 
 
 
 
 
 
9a6080b
686386f
 
 
 
 
b22cdaf
 
 
 
 
 
 
 
 
 
686386f
9a6080b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a8cba0
 
 
 
 
9a6080b
 
 
 
 
 
 
 
 
 
686386f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
inference:
  parameters:
    max_new_tokens: 64
    do_sample: true
    temperature: 0.85
    repetition_penalty: 1.35
    no_repeat_ngram_size: 5
    eta_cutoff: 0.001
    renormalize_logits: true
widget:
- text: My name is El Microondas the Wise and
  example_title: El Microondas
- text: Kennesaw State University is a public
  example_title: Kennesaw State University
- text: >-
    Bungie Studios is an American video game developer. They are most famous for
    developing the award winning Halo series of video games. They also made
    Destiny. The studio was founded
  example_title: Bungie
- text: The Mona Lisa is a world-renowned painting created by
  example_title: Mona Lisa
- text: >-
    The Harry Potter series, written by J.K. Rowling, begins with the book
    titled
  example_title: Harry Potter Series
- text: >-
    Question: I have cities, but no houses. I have mountains, but no trees. I
    have water, but no fish. What am I?

    Answer:
  example_title: Riddle
- text: The process of photosynthesis involves the conversion of
  example_title: Photosynthesis
- text: >-
    Jane went to the store to buy some groceries. She picked up apples, oranges,
    and a loaf of bread. When she got home, she realized she forgot
  example_title: Story Continuation
- text: >-
    Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph, and
    another train leaves Station B at 10:00 AM and travels at 80 mph, when will
    they meet if the distance between the stations is 300 miles?

    To determine
  example_title: Math Problem
- text: In the context of computer programming, an algorithm is
  example_title: Algorithm Definition
pipeline_tag: text-generation
datasets:
- BEE-spoke-data/knowledge-inoc-concat-v1
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# verysmol_llama-v11-KIx2

## Model description

This model is a fine-tuned version of v10 (refinedweb-3m dedup) further trained for 2 epochs on KI dataset.

It achieves the following results on the evaluation set:
- Loss: 2.8876
- Accuracy: 0.4502

---

## evals

`hf-causal-experimental (pretrained=pszemraj/verysmol_llama-v11-KIx2,revision=main,trust_remote_code=True,dtype='float'), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16`

|     Task     |Version| Metric | Value  |   |Stderr|
|--------------|------:|--------|-------:|---|-----:|
|arc_easy      |      0|acc     |  0.4024|±  |0.0101|
|              |       |acc_norm|  0.3788|±  |0.0100|
|boolq         |      1|acc     |  0.6199|±  |0.0085|
|lambada_openai|      0|ppl     |111.9939|±  |4.6906|
|              |       |acc     |  0.2354|±  |0.0059|
|openbookqa    |      0|acc     |  0.1440|±  |0.0157|
|              |       |acc_norm|  0.2760|±  |0.0200|
|piqa          |      0|acc     |  0.5713|±  |0.0115|
|              |       |acc_norm|  0.5664|±  |0.0116|
|winogrande    |      0|acc     |  0.5201|±  |0.0140|

|    Task     |Version| Metric |Value |   |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge|      0|acc     |0.1971|±  |0.0116|
|             |       |acc_norm|0.2278|±  |0.0123|

|  Task   |Version| Metric |Value |   |Stderr|
|---------|------:|--------|-----:|---|-----:|
|hellaswag|      0|acc     |0.2618|±  |0.0088|
|         |       |acc_norm|0.2797|±  |0.0090|

|    Task     |Version|Metric|Value |   |Stderr|
|-------------|------:|------|-----:|---|-----:|
|truthfulqa_mc|      1|mc1   |0.2509|±  |0.0152|
|             |       |mc2   |0.4492|±  |0.0156|

---

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00014
- train_batch_size: 16
- eval_batch_size: 16
- seed: 17514
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-06
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.0681        | 0.03  | 150  | 3.0689          | 0.4259   |
| 3.0113        | 0.07  | 300  | 3.0433          | 0.4278   |
| 2.9468        | 0.1   | 450  | 3.0362          | 0.4288   |
| 3.0162        | 0.13  | 600  | 3.0148          | 0.4326   |
| 2.9531        | 0.17  | 750  | 3.0012          | 0.4341   |
| 2.9282        | 0.2   | 900  | 2.9923          | 0.4358   |
| 2.9485        | 0.23  | 1050 | 2.9845          | 0.4357   |
| 2.9365        | 0.27  | 1200 | 2.9749          | 0.4375   |

...

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.8215        | 1.7   | 7650 | 2.8943          | 0.4496   |
| 2.7714        | 1.74  | 7800 | 2.8914          | 0.4501   |
| 2.8132        | 1.77  | 7950 | 2.8913          | 0.4500   |
| 2.8505        | 1.8   | 8100 | 2.8906          | 0.4502   |
| 2.8294        | 1.84  | 8250 | 2.8901          | 0.4502   |
| 2.7977        | 1.87  | 8400 | 2.8891          | 0.4499   |
| 2.7501        | 1.9   | 8550 | 2.8878          | 0.4505   |
| 2.8038        | 1.94  | 8700 | 2.8883          | 0.4504   |
| 2.7547        | 1.97  | 8850 | 2.8876          | 0.4502   |

---