Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +217 -3
- config.json +131 -0
- demo_cases.png +3 -0
- model.safetensors +3 -0
- special_tokens_map.json +36 -0
- tokenizer.json +0 -0
- tokenizer_config.json +440 -0
- vae/config.json +31 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
demo_cases.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,217 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: text-to-image
|
4 |
+
tags:
|
5 |
+
- image-to-image
|
6 |
+
---
|
7 |
+
<h1 align="center">OmniGen: Unified Image Generation</h1>
|
8 |
+
|
9 |
+
More information please refer to our repo: https://github.com/VectorSpaceLab/OmniGen
|
10 |
+
|
11 |
+
<p align="center">
|
12 |
+
<a href="https://vectorspacelab.github.io/OmniGen/">
|
13 |
+
<img alt="Build" src="https://img.shields.io/badge/Project%20Page-OmniGen-yellow">
|
14 |
+
</a>
|
15 |
+
<a href="https://arxiv.org/abs/2409.11340">
|
16 |
+
<img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-2409.11340-b31b1b.svg">
|
17 |
+
</a>
|
18 |
+
<a href="https://huggingface.co/spaces/Shitao/OmniGen">
|
19 |
+
<img alt="License" src="https://img.shields.io/badge/HF%20Demo-🤗-lightblue">
|
20 |
+
</a>
|
21 |
+
<a href="https://huggingface.co/Shitao/OmniGen-v1">
|
22 |
+
<img alt="Build" src="https://img.shields.io/badge/HF%20Model-🤗-yellow">
|
23 |
+
</a>
|
24 |
+
<a href="https://replicate.com/chenxwh/omnigen">
|
25 |
+
<img alt="Build" src="https://replicate.com/chenxwh/omnigen/badge">
|
26 |
+
</a>
|
27 |
+
</p>
|
28 |
+
|
29 |
+
<h4 align="center">
|
30 |
+
<p>
|
31 |
+
<a href=#1-news>News</a> |
|
32 |
+
<a href=#3-methodology>Methodology</a> |
|
33 |
+
<a href=#4-what-can-omnigen-do>Capabilities</a> |
|
34 |
+
<a href=#5-quick-start>Quick Start</a> |
|
35 |
+
<a href="#6-finetune">Finetune</a> |
|
36 |
+
<a href="#license">License</a> |
|
37 |
+
<a href="#citation">Citation</a>
|
38 |
+
<p>
|
39 |
+
</h4>
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
## 1. News
|
44 |
+
- 2024-10-28: We release new version of inference code, optimizing the memory usage and time cost. You can refer to [docs/inference.md](docs/inference.md#requiremented-resources) for detailed information.
|
45 |
+
- 2024-10-22: :fire: We release the code for OmniGen. Inference: [docs/inference.md](docs/inference.md) Train: [docs/fine-tuning.md](docs/fine-tuning.md)
|
46 |
+
- 2024-10-22: :fire: We release the first version of OmniGen. Model Weight: [Shitao/OmniGen-v1](https://huggingface.co/Shitao/OmniGen-v1) HF Demo: [🤗](https://huggingface.co/spaces/Shitao/OmniGen)
|
47 |
+
|
48 |
+
|
49 |
+
## 2. Overview
|
50 |
+
|
51 |
+
OmniGen is a unified image generation model that can generate a wide range of images from multi-modal prompts. It is designed to be simple, flexible, and easy to use. We provide [inference code](#5-quick-start) so that everyone can explore more functionalities of OmniGen.
|
52 |
+
|
53 |
+
Existing image generation models often require loading several additional network modules (such as ControlNet, IP-Adapter, Reference-Net, etc.) and performing extra preprocessing steps (e.g., face detection, pose estimation, cropping, etc.) to generate a satisfactory image. However, **we believe that the future image generation paradigm should be more simple and flexible, that is, generating various images directly through arbitrarily multi-modal instructions without the need for additional plugins and operations, similar to how GPT works in language generation.**
|
54 |
+
|
55 |
+
Due to the limited resources, OmniGen still has room for improvement. We will continue to optimize it, and hope it inspires more universal image-generation models. You can also easily fine-tune OmniGen without worrying about designing networks for specific tasks; you just need to prepare the corresponding data, and then run the [script](#6-finetune). Imagination is no longer limited; everyone can construct any image-generation task, and perhaps we can achieve very interesting, wonderful, and creative things.
|
56 |
+
|
57 |
+
If you have any questions, ideas, or interesting tasks you want OmniGen to accomplish, feel free to discuss with us: [email protected], [email protected], [email protected]. We welcome any feedback to help us improve the model.
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
## 3. Methodology
|
62 |
+
|
63 |
+
You can see details in our [paper](https://arxiv.org/abs/2409.11340).
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
## 4. What Can OmniGen do?
|
68 |
+
|
69 |
+
OmniGen is a unified image generation model that you can use to perform various tasks, including but not limited to text-to-image generation, subject-driven generation, Identity-Preserving Generation, image editing, and image-conditioned generation. **OmniGen doesn't need additional plugins or operations, it can automatically identify the features (e.g., required object, human pose, depth mapping) in input images according to the text prompt.**
|
70 |
+
We showcase some examples in [inference.ipynb](inference.ipynb). And in [inference_demo.ipynb](inference_demo.ipynb), we show an interesting pipeline to generate and modify an image.
|
71 |
+
|
72 |
+
You can control the image generation flexibly via OmniGen
|
73 |
+
![demo](demo_cases.png)
|
74 |
+
|
75 |
+
If you are not entirely satisfied with certain functionalities or wish to add new capabilities, you can try [fine-tuning OmniGen](#6-finetune).
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
## 5. Quick Start
|
80 |
+
|
81 |
+
|
82 |
+
### Using OmniGen
|
83 |
+
Install via Github:
|
84 |
+
```bash
|
85 |
+
git clone https://github.com/staoxiao/OmniGen.git
|
86 |
+
cd OmniGen
|
87 |
+
pip install -e .
|
88 |
+
```
|
89 |
+
|
90 |
+
You also can create a new environment to avoid conflicts:
|
91 |
+
```
|
92 |
+
# Create a python 3.10.12 conda env (you could also use virtualenv)
|
93 |
+
conda create -n omnigen python=3.10.12
|
94 |
+
conda activate omnigen
|
95 |
+
|
96 |
+
# Install pytorch with your CUDA version, e.g.
|
97 |
+
pip install torch==2.3.1+cu118 torchvision --extra-index-url https://download.pytorch.org/whl/cu118
|
98 |
+
|
99 |
+
git clone https://github.com/staoxiao/OmniGen.git
|
100 |
+
cd OmniGen
|
101 |
+
pip install -e .
|
102 |
+
```
|
103 |
+
|
104 |
+
Here are some examples:
|
105 |
+
```python
|
106 |
+
from OmniGen import OmniGenPipeline
|
107 |
+
|
108 |
+
pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1")
|
109 |
+
# Note: Your local model path is also acceptable, such as 'pipe = OmniGenPipeline.from_pretrained(your_local_model_path)', where all files in your_local_model_path should be organized as https://huggingface.co/Shitao/OmniGen-v1/tree/main
|
110 |
+
|
111 |
+
|
112 |
+
## Text to Image
|
113 |
+
images = pipe(
|
114 |
+
prompt="A curly-haired man in a red shirt is drinking tea.",
|
115 |
+
height=1024,
|
116 |
+
width=1024,
|
117 |
+
guidance_scale=2.5,
|
118 |
+
seed=0,
|
119 |
+
)
|
120 |
+
images[0].save("example_t2i.png") # save output PIL Image
|
121 |
+
|
122 |
+
## Multi-modal to Image
|
123 |
+
# In the prompt, we use the placeholder to represent the image. The image placeholder should be in the format of <img><|image_*|></img>
|
124 |
+
# You can add multiple images in the input_images. Please ensure that each image has its placeholder. For example, for the list input_images [img1_path, img2_path], the prompt needs to have two placeholders: <img><|image_1|></img>, <img><|image_2|></img>.
|
125 |
+
images = pipe(
|
126 |
+
prompt="A man in a black shirt is reading a book. The man is the right man in <img><|image_1|></img>.",
|
127 |
+
input_images=["./imgs/test_cases/two_man.jpg"],
|
128 |
+
height=1024,
|
129 |
+
width=1024,
|
130 |
+
guidance_scale=2.5,
|
131 |
+
img_guidance_scale=1.6,
|
132 |
+
seed=0
|
133 |
+
)
|
134 |
+
images[0].save("example_ti2i.png") # save output PIL image
|
135 |
+
```
|
136 |
+
- If out of memory, you can set `offload_model=True`. If the inference time is too long when inputting multiple images, you can reduce the `max_input_image_size`. For the required resources and the method to run OmniGen efficiently, please refer to [docs/inference.md#requiremented-resources](docs/inference.md#requiremented-resources).
|
137 |
+
- For more examples of image generation, you can refer to [inference.ipynb](inference.ipynb) and [inference_demo.ipynb](inference_demo.ipynb)
|
138 |
+
- For more details about the argument in inference, please refer to [docs/inference.md](docs/inference.md).
|
139 |
+
|
140 |
+
|
141 |
+
### Using Diffusers
|
142 |
+
|
143 |
+
Coming soon.
|
144 |
+
|
145 |
+
|
146 |
+
### Gradio Demo
|
147 |
+
|
148 |
+
We construct an online demo in [Huggingface](https://huggingface.co/spaces/Shitao/OmniGen).
|
149 |
+
|
150 |
+
For the local gradio demo, you need to install `pip install gradio spaces`, and then you can run:
|
151 |
+
```python
|
152 |
+
pip install gradio spaces
|
153 |
+
python app.py
|
154 |
+
```
|
155 |
+
|
156 |
+
#### Use Google Colab
|
157 |
+
To use with Google Colab, please use the following command:
|
158 |
+
|
159 |
+
```
|
160 |
+
!git clone https://github.com/staoxiao/OmniGen.git
|
161 |
+
%cd OmniGen
|
162 |
+
!pip install -e .
|
163 |
+
!pip install gradio spaces
|
164 |
+
!python app.py --share
|
165 |
+
```
|
166 |
+
|
167 |
+
## 6. Finetune
|
168 |
+
We provide a training script `train.py` to fine-tune OmniGen.
|
169 |
+
Here is a toy example about LoRA finetune:
|
170 |
+
```bash
|
171 |
+
accelerate launch --num_processes=1 train.py \
|
172 |
+
--model_name_or_path Shitao/OmniGen-v1 \
|
173 |
+
--batch_size_per_device 2 \
|
174 |
+
--condition_dropout_prob 0.01 \
|
175 |
+
--lr 1e-3 \
|
176 |
+
--use_lora \
|
177 |
+
--lora_rank 8 \
|
178 |
+
--json_file ./toy_data/toy_subject_data.jsonl \
|
179 |
+
--image_path ./toy_data/images \
|
180 |
+
--max_input_length_limit 18000 \
|
181 |
+
--keep_raw_resolution \
|
182 |
+
--max_image_size 1024 \
|
183 |
+
--gradient_accumulation_steps 1 \
|
184 |
+
--ckpt_every 10 \
|
185 |
+
--epochs 200 \
|
186 |
+
--log_every 1 \
|
187 |
+
--results_dir ./results/toy_finetune_lora
|
188 |
+
```
|
189 |
+
|
190 |
+
Please refer to [docs/fine-tuning.md](docs/fine-tuning.md) for more details (e.g. full finetune).
|
191 |
+
|
192 |
+
### Contributors:
|
193 |
+
Thank all our contributors for their efforts and warmly welcome new members to join in!
|
194 |
+
|
195 |
+
<a href="https://github.com/VectorSpaceLab/OmniGen/graphs/contributors">
|
196 |
+
<img src="https://contrib.rocks/image?repo=VectorSpaceLab/OmniGen" />
|
197 |
+
</a>
|
198 |
+
|
199 |
+
## License
|
200 |
+
This repo is licensed under the [MIT License](LICENSE).
|
201 |
+
|
202 |
+
|
203 |
+
## Citation
|
204 |
+
If you find this repository useful, please consider giving a star ⭐ and citation
|
205 |
+
```
|
206 |
+
@article{xiao2024omnigen,
|
207 |
+
title={Omnigen: Unified image generation},
|
208 |
+
author={Xiao, Shitao and Wang, Yueze and Zhou, Junjie and Yuan, Huaying and Xing, Xingrun and Yan, Ruiran and Wang, Shuting and Huang, Tiejun and Liu, Zheng},
|
209 |
+
journal={arXiv preprint arXiv:2409.11340},
|
210 |
+
year={2024}
|
211 |
+
}
|
212 |
+
```
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
|
config.json
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Phi-3-vision-128k-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Phi3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 8192,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"model_type": "phi3",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 32,
|
18 |
+
"original_max_position_embeddings": 4096,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": {
|
21 |
+
"long_factor": [
|
22 |
+
1.0299999713897705,
|
23 |
+
1.0499999523162842,
|
24 |
+
1.0499999523162842,
|
25 |
+
1.0799999237060547,
|
26 |
+
1.2299998998641968,
|
27 |
+
1.2299998998641968,
|
28 |
+
1.2999999523162842,
|
29 |
+
1.4499999284744263,
|
30 |
+
1.5999999046325684,
|
31 |
+
1.6499998569488525,
|
32 |
+
1.8999998569488525,
|
33 |
+
2.859999895095825,
|
34 |
+
3.68999981880188,
|
35 |
+
5.419999599456787,
|
36 |
+
5.489999771118164,
|
37 |
+
5.489999771118164,
|
38 |
+
9.09000015258789,
|
39 |
+
11.579999923706055,
|
40 |
+
15.65999984741211,
|
41 |
+
15.769999504089355,
|
42 |
+
15.789999961853027,
|
43 |
+
18.360000610351562,
|
44 |
+
21.989999771118164,
|
45 |
+
23.079999923706055,
|
46 |
+
30.009998321533203,
|
47 |
+
32.35000228881836,
|
48 |
+
32.590003967285156,
|
49 |
+
35.56000518798828,
|
50 |
+
39.95000457763672,
|
51 |
+
53.840003967285156,
|
52 |
+
56.20000457763672,
|
53 |
+
57.95000457763672,
|
54 |
+
59.29000473022461,
|
55 |
+
59.77000427246094,
|
56 |
+
59.920005798339844,
|
57 |
+
61.190006256103516,
|
58 |
+
61.96000671386719,
|
59 |
+
62.50000762939453,
|
60 |
+
63.3700065612793,
|
61 |
+
63.48000717163086,
|
62 |
+
63.48000717163086,
|
63 |
+
63.66000747680664,
|
64 |
+
63.850006103515625,
|
65 |
+
64.08000946044922,
|
66 |
+
64.760009765625,
|
67 |
+
64.80001068115234,
|
68 |
+
64.81001281738281,
|
69 |
+
64.81001281738281
|
70 |
+
],
|
71 |
+
"short_factor": [
|
72 |
+
1.05,
|
73 |
+
1.05,
|
74 |
+
1.05,
|
75 |
+
1.1,
|
76 |
+
1.1,
|
77 |
+
1.1,
|
78 |
+
1.2500000000000002,
|
79 |
+
1.2500000000000002,
|
80 |
+
1.4000000000000004,
|
81 |
+
1.4500000000000004,
|
82 |
+
1.5500000000000005,
|
83 |
+
1.8500000000000008,
|
84 |
+
1.9000000000000008,
|
85 |
+
2.000000000000001,
|
86 |
+
2.000000000000001,
|
87 |
+
2.000000000000001,
|
88 |
+
2.000000000000001,
|
89 |
+
2.000000000000001,
|
90 |
+
2.000000000000001,
|
91 |
+
2.000000000000001,
|
92 |
+
2.000000000000001,
|
93 |
+
2.000000000000001,
|
94 |
+
2.000000000000001,
|
95 |
+
2.000000000000001,
|
96 |
+
2.000000000000001,
|
97 |
+
2.000000000000001,
|
98 |
+
2.000000000000001,
|
99 |
+
2.000000000000001,
|
100 |
+
2.000000000000001,
|
101 |
+
2.000000000000001,
|
102 |
+
2.000000000000001,
|
103 |
+
2.000000000000001,
|
104 |
+
2.1000000000000005,
|
105 |
+
2.1000000000000005,
|
106 |
+
2.2,
|
107 |
+
2.3499999999999996,
|
108 |
+
2.3499999999999996,
|
109 |
+
2.3499999999999996,
|
110 |
+
2.3499999999999996,
|
111 |
+
2.3999999999999995,
|
112 |
+
2.3999999999999995,
|
113 |
+
2.6499999999999986,
|
114 |
+
2.6999999999999984,
|
115 |
+
2.8999999999999977,
|
116 |
+
2.9499999999999975,
|
117 |
+
3.049999999999997,
|
118 |
+
3.049999999999997,
|
119 |
+
3.049999999999997
|
120 |
+
],
|
121 |
+
"type": "su"
|
122 |
+
},
|
123 |
+
"rope_theta": 10000.0,
|
124 |
+
"sliding_window": 131072,
|
125 |
+
"tie_word_embeddings": false,
|
126 |
+
"torch_dtype": "bfloat16",
|
127 |
+
"transformers_version": "4.38.1",
|
128 |
+
"use_cache": true,
|
129 |
+
"vocab_size": 32064,
|
130 |
+
"_attn_implementation": "sdpa"
|
131 |
+
}
|
demo_cases.png
ADDED
Git LFS Details
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80b7caa72c6628a30b76083208830c7b9f6d2debf8d63831414583a0a21dd395
|
3 |
+
size 15501299112
|
special_tokens_map.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|system|>",
|
4 |
+
"<|end|>",
|
5 |
+
"<|user|>",
|
6 |
+
"<|end|>"
|
7 |
+
],
|
8 |
+
"bos_token": {
|
9 |
+
"content": "<s>",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": false,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
},
|
15 |
+
"eos_token": {
|
16 |
+
"content": "<|endoftext|>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": false,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": false
|
21 |
+
},
|
22 |
+
"pad_token": {
|
23 |
+
"content": "<|endoftext|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
},
|
29 |
+
"unk_token": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false
|
35 |
+
}
|
36 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": true,
|
26 |
+
"single_word": false,
|
27 |
+
"special": false
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<|endoftext|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "<|assistant|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": true,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"32002": {
|
46 |
+
"content": "<|placeholder1|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": true,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"32003": {
|
54 |
+
"content": "<|placeholder2|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": true,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"32004": {
|
62 |
+
"content": "<|placeholder3|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": true,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"32005": {
|
70 |
+
"content": "<|placeholder4|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": true,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"32006": {
|
78 |
+
"content": "<|system|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"32007": {
|
86 |
+
"content": "<|end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"32008": {
|
94 |
+
"content": "<|placeholder5|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": true,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"32009": {
|
102 |
+
"content": "<|placeholder6|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": true,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"32010": {
|
110 |
+
"content": "<|user|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"32011": {
|
118 |
+
"content": "<|placeholder7|>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": true,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"32012": {
|
126 |
+
"content": "<|placeholder8|>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": true,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"32013": {
|
134 |
+
"content": "<|placeholder9|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": true,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
},
|
141 |
+
"32014": {
|
142 |
+
"content": "<|placeholder10|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": true,
|
146 |
+
"single_word": false,
|
147 |
+
"special": true
|
148 |
+
},
|
149 |
+
"32015": {
|
150 |
+
"content": "<|placeholder11|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": true,
|
154 |
+
"single_word": false,
|
155 |
+
"special": true
|
156 |
+
},
|
157 |
+
"32016": {
|
158 |
+
"content": "<|placeholder12|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": true,
|
162 |
+
"single_word": false,
|
163 |
+
"special": true
|
164 |
+
},
|
165 |
+
"32017": {
|
166 |
+
"content": "<|placeholder13|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": true,
|
170 |
+
"single_word": false,
|
171 |
+
"special": true
|
172 |
+
},
|
173 |
+
"32018": {
|
174 |
+
"content": "<|placeholder14|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": true,
|
178 |
+
"single_word": false,
|
179 |
+
"special": true
|
180 |
+
},
|
181 |
+
"32019": {
|
182 |
+
"content": "<|placeholder15|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": true,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
},
|
189 |
+
"32020": {
|
190 |
+
"content": "<|placeholder16|>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": true,
|
194 |
+
"single_word": false,
|
195 |
+
"special": true
|
196 |
+
},
|
197 |
+
"32021": {
|
198 |
+
"content": "<|placeholder17|>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": true,
|
202 |
+
"single_word": false,
|
203 |
+
"special": true
|
204 |
+
},
|
205 |
+
"32022": {
|
206 |
+
"content": "<|placeholder18|>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": true,
|
210 |
+
"single_word": false,
|
211 |
+
"special": true
|
212 |
+
},
|
213 |
+
"32023": {
|
214 |
+
"content": "<|placeholder19|>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": true,
|
218 |
+
"single_word": false,
|
219 |
+
"special": true
|
220 |
+
},
|
221 |
+
"32024": {
|
222 |
+
"content": "<|placeholder20|>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": true,
|
226 |
+
"single_word": false,
|
227 |
+
"special": true
|
228 |
+
},
|
229 |
+
"32025": {
|
230 |
+
"content": "<|placeholder21|>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": true,
|
234 |
+
"single_word": false,
|
235 |
+
"special": true
|
236 |
+
},
|
237 |
+
"32026": {
|
238 |
+
"content": "<|placeholder22|>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": true,
|
242 |
+
"single_word": false,
|
243 |
+
"special": true
|
244 |
+
},
|
245 |
+
"32027": {
|
246 |
+
"content": "<|placeholder23|>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": true,
|
250 |
+
"single_word": false,
|
251 |
+
"special": true
|
252 |
+
},
|
253 |
+
"32028": {
|
254 |
+
"content": "<|placeholder24|>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": true,
|
258 |
+
"single_word": false,
|
259 |
+
"special": true
|
260 |
+
},
|
261 |
+
"32029": {
|
262 |
+
"content": "<|placeholder25|>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": true,
|
266 |
+
"single_word": false,
|
267 |
+
"special": true
|
268 |
+
},
|
269 |
+
"32030": {
|
270 |
+
"content": "<|placeholder26|>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": true,
|
274 |
+
"single_word": false,
|
275 |
+
"special": true
|
276 |
+
},
|
277 |
+
"32031": {
|
278 |
+
"content": "<|placeholder27|>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": true,
|
282 |
+
"single_word": false,
|
283 |
+
"special": true
|
284 |
+
},
|
285 |
+
"32032": {
|
286 |
+
"content": "<|placeholder28|>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": true,
|
290 |
+
"single_word": false,
|
291 |
+
"special": true
|
292 |
+
},
|
293 |
+
"32033": {
|
294 |
+
"content": "<|placeholder29|>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": true,
|
298 |
+
"single_word": false,
|
299 |
+
"special": true
|
300 |
+
},
|
301 |
+
"32034": {
|
302 |
+
"content": "<|placeholder30|>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": true,
|
306 |
+
"single_word": false,
|
307 |
+
"special": true
|
308 |
+
},
|
309 |
+
"32035": {
|
310 |
+
"content": "<|placeholder31|>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": true,
|
314 |
+
"single_word": false,
|
315 |
+
"special": true
|
316 |
+
},
|
317 |
+
"32036": {
|
318 |
+
"content": "<|placeholder32|>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": true,
|
322 |
+
"single_word": false,
|
323 |
+
"special": true
|
324 |
+
},
|
325 |
+
"32037": {
|
326 |
+
"content": "<|placeholder33|>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": true,
|
330 |
+
"single_word": false,
|
331 |
+
"special": true
|
332 |
+
},
|
333 |
+
"32038": {
|
334 |
+
"content": "<|placeholder34|>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": true,
|
338 |
+
"single_word": false,
|
339 |
+
"special": true
|
340 |
+
},
|
341 |
+
"32039": {
|
342 |
+
"content": "<|placeholder35|>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": true,
|
346 |
+
"single_word": false,
|
347 |
+
"special": true
|
348 |
+
},
|
349 |
+
"32040": {
|
350 |
+
"content": "<|placeholder36|>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": true,
|
354 |
+
"single_word": false,
|
355 |
+
"special": true
|
356 |
+
},
|
357 |
+
"32041": {
|
358 |
+
"content": "<|placeholder37|>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": true,
|
362 |
+
"single_word": false,
|
363 |
+
"special": true
|
364 |
+
},
|
365 |
+
"32042": {
|
366 |
+
"content": "<|placeholder38|>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": true,
|
370 |
+
"single_word": false,
|
371 |
+
"special": true
|
372 |
+
},
|
373 |
+
"32043": {
|
374 |
+
"content": "<|placeholder39|>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": true,
|
378 |
+
"single_word": false,
|
379 |
+
"special": true
|
380 |
+
},
|
381 |
+
"32044": {
|
382 |
+
"content": "<|image|>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": true,
|
386 |
+
"single_word": false,
|
387 |
+
"special": true
|
388 |
+
},
|
389 |
+
"32045": {
|
390 |
+
"content": "<img>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": false,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": true
|
396 |
+
},
|
397 |
+
"32046": {
|
398 |
+
"content": "</img>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": false,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": true
|
404 |
+
},
|
405 |
+
"32047": {
|
406 |
+
"content": "<cfg>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": false,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": true
|
412 |
+
},
|
413 |
+
"32048": {
|
414 |
+
"content": "<|diffusion|>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": false,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": true
|
420 |
+
}
|
421 |
+
},
|
422 |
+
"additional_special_tokens": [
|
423 |
+
"<|system|>",
|
424 |
+
"<|end|>",
|
425 |
+
"<|user|>",
|
426 |
+
"<|end|>"
|
427 |
+
],
|
428 |
+
"bos_token": "<s>",
|
429 |
+
"chat_template": "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}",
|
430 |
+
"clean_up_tokenization_spaces": false,
|
431 |
+
"eos_token": "<|endoftext|>",
|
432 |
+
"legacy": false,
|
433 |
+
"model_max_length": 131072,
|
434 |
+
"pad_token": "<|endoftext|>",
|
435 |
+
"padding_side": "right",
|
436 |
+
"sp_model_kwargs": {},
|
437 |
+
"tokenizer_class": "LlamaTokenizer",
|
438 |
+
"unk_token": "<unk>",
|
439 |
+
"use_default_system_prompt": false
|
440 |
+
}
|
vae/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.18.0.dev0",
|
4 |
+
"_name_or_path": ".",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"block_out_channels": [
|
7 |
+
128,
|
8 |
+
256,
|
9 |
+
512,
|
10 |
+
512
|
11 |
+
],
|
12 |
+
"down_block_types": [
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D",
|
16 |
+
"DownEncoderBlock2D"
|
17 |
+
],
|
18 |
+
"in_channels": 3,
|
19 |
+
"latent_channels": 4,
|
20 |
+
"layers_per_block": 2,
|
21 |
+
"norm_num_groups": 32,
|
22 |
+
"out_channels": 3,
|
23 |
+
"sample_size": 1024,
|
24 |
+
"scaling_factor": 0.13025,
|
25 |
+
"up_block_types": [
|
26 |
+
"UpDecoderBlock2D",
|
27 |
+
"UpDecoderBlock2D",
|
28 |
+
"UpDecoderBlock2D",
|
29 |
+
"UpDecoderBlock2D"
|
30 |
+
]
|
31 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1598f3d24932bcfe6634e8b618ea1e30ab1d57f5aad13a6d2de446d2199f2341
|
3 |
+
size 334643268
|