BAAI
/

ryanzhangfan commited on
Commit
a7b7fab
1 Parent(s): fd16886

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -6
README.md CHANGED
@@ -49,7 +49,7 @@ from processing_emu3 import Emu3Processor
49
 
50
  # model path
51
  EMU_HUB = "BAAI/Emu3-Chat"
52
- VQ_HUB = "BAAI/Emu3-VisionTokenizer"
53
 
54
  # prepare model and processor
55
  model = AutoModelForCausalLM.from_pretrained(
@@ -60,7 +60,7 @@ model = AutoModelForCausalLM.from_pretrained(
60
  trust_remote_code=True,
61
  )
62
 
63
- tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True)
64
  image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)
65
  image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
66
  processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)
@@ -73,19 +73,23 @@ inputs = processor(
73
  text=text,
74
  image=image,
75
  mode='U',
76
- padding_side="left",
77
- padding="longest",
78
  return_tensors="pt",
 
79
  )
80
 
81
  # prepare hyper parameters
82
- GENERATION_CONFIG = GenerationConfig(pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id)
 
 
 
 
 
83
 
84
  # generate
85
  outputs = model.generate(
86
  inputs.input_ids.to("cuda:0"),
87
  GENERATION_CONFIG,
88
- max_new_tokens=320,
89
  )
90
 
91
  outputs = outputs[:, inputs.input_ids.shape[-1]:]
 
49
 
50
  # model path
51
  EMU_HUB = "BAAI/Emu3-Chat"
52
+ VQ_HUB = "BAAI/Emu3-VisionTokenier"
53
 
54
  # prepare model and processor
55
  model = AutoModelForCausalLM.from_pretrained(
 
60
  trust_remote_code=True,
61
  )
62
 
63
+ tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True, padding_side="left")
64
  image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)
65
  image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
66
  processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)
 
73
  text=text,
74
  image=image,
75
  mode='U',
 
 
76
  return_tensors="pt",
77
+ padding="longest",
78
  )
79
 
80
  # prepare hyper parameters
81
+ GENERATION_CONFIG = GenerationConfig(
82
+ pad_token_id=tokenizer.pad_token_id,
83
+ bos_token_id=tokenizer.bos_token_id,
84
+ eos_token_id=tokenizer.eos_token_id,
85
+ max_new_tokens=1024,
86
+ )
87
 
88
  # generate
89
  outputs = model.generate(
90
  inputs.input_ids.to("cuda:0"),
91
  GENERATION_CONFIG,
92
+ attention_mask=pos_inputs.attention_mask.to("cuda:0"),
93
  )
94
 
95
  outputs = outputs[:, inputs.input_ids.shape[-1]:]