BAAI
/

File size: 2,950 Bytes
94953a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from typing import Literal
from transformers import PretrainedConfig


class EmuConfig(PretrainedConfig):
    _auto_class = "AutoConfig"

    def __init__(
            self,
            vocab_size=32000,
            hidden_size=4096,
            intermediate_size=11008,
            num_hidden_layers=32,
            num_attention_heads=32,
            hidden_act='silu',
            max_position_embeddings=2048,
            initializer_range=0.02,
            rms_norm_eps=1e-06,
            model_version: Literal["base", "chat"] = "base",
            pad_token_id=0,
            bos_token_id=1,
            eos_token_id=2,
            tie_word_embeddings=False,
            use_cache=True,
            pretraining_tp=1,
            rope_theta=10000.0,
            rope_scaling=None,
            attention_bias=False,
            attention_dropout=0.0,
            **kwargs,
    ):
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_attention_heads = num_attention_heads
        self.max_position_embeddings = max_position_embeddings
        self.rms_norm_eps = rms_norm_eps
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.num_hidden_layers = num_hidden_layers
        self.hidden_act = hidden_act
        self.model_version = model_version
        self.use_cache = use_cache
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self._rope_scaling_validation()
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
            raise ValueError(
                "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
                f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_factor = self.rope_scaling.get("factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
            raise ValueError(
                f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
            )
        if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
            raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")