File size: 5,157 Bytes
f766bdd
485f506
 
 
f766bdd
8e222ec
 
 
 
 
485f506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f766bdd
8e222ec
 
5ce8787
7dc77bc
45a75b9
8e222ec
45a75b9
8e222ec
45a75b9
8e222ec
45a75b9
8e222ec
45a75b9
8e222ec
45a75b9
8e222ec
45a75b9
8e222ec
 
 
45a75b9
d84e28c
8e222ec
 
45a75b9
8e222ec
 
 
45a75b9
 
 
8e222ec
 
 
485f506
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
language:
- zh
- en
license: apache-2.0
datasets:
- Azure99/blossom-chat-v1
- Azure99/blossom-math-v2
- Azure99/blossom-wizard-v1
- Azure99/blossom-orca-v1
model-index:
- name: blossom-v3_1-mistral-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 60.49
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v3_1-mistral-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 81.71
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v3_1-mistral-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 61.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v3_1-mistral-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 49.51
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v3_1-mistral-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v3_1-mistral-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.93
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v3_1-mistral-7b
      name: Open LLM Leaderboard
---
# **BLOSSOM-v3.1-mistral-7b**

[💻Github](https://github.com/Azure99/BlossomLM) • [🚀Blossom Chat Demo](https://blossom-chat.com/)

### Introduction

Blossom is a conversational large language model, fine-tuned on the Blossom Orca/Wizard/Chat/Math mixed dataset based on the Mistral-7B-v0.1 pre-trained model. Blossom possesses robust general capabilities and context comprehension. Additionally, the high-quality Chinese and English datasets used for training have been made open source.

Training was conducted in two stages. The first stage used 100K Wizard, 100K Orca single-turn instruction datasets, training for 1 epoch; the second stage used a 2K Blossom math reasoning dataset, 50K Blossom chat multi-turn dialogue dataset, and 1% randomly sampled data from the first stage, training for 3 epochs.

Note: The Mistral-7B-v0.1 pre-trained model is somewhat lacking in Chinese knowledge, so for Chinese scenarios, it is recommended to use [blossom-v3-baichuan2-7b](https://huggingface.co/Azure99/blossom-v3-baichuan2-7b).

### Inference

Inference is performed in the form of dialogue continuation.

Single-turn dialogue

```
A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions.
|Human|: hello
|Bot|: 
```

Multi-turn dialogue

```
A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions.
|Human|: hello
|Bot|: Hello! How can I assist you today?</s>
|Human|: Generate a random number using python
|Bot|: 
```

Note: At the end of the Bot's output in the historical conversation, append a `</s>`.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Azure99__blossom-v3_1-mistral-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |62.53|
|AI2 Reasoning Challenge (25-Shot)|60.49|
|HellaSwag (10-Shot)              |81.71|
|MMLU (5-Shot)                    |61.00|
|TruthfulQA (0-shot)              |49.51|
|Winogrande (5-shot)              |75.53|
|GSM8k (5-shot)                   |46.93|