Azarthehulk
commited on
Commit
•
0b73a08
1
Parent(s):
467a62c
Upload 21075A6603-DecisioN_TREE.ipynb
Browse files- 21075A6603-DecisioN_TREE.ipynb +263 -0
21075A6603-DecisioN_TREE.ipynb
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "ab540ee7",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Decision Tree"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 2,
|
14 |
+
"id": "92d3ce84",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"from sklearn.metrics import confusion_matrix\n",
|
19 |
+
"from sklearn.model_selection import train_test_split\n",
|
20 |
+
"from sklearn.tree import DecisionTreeClassifier\n",
|
21 |
+
"from sklearn.metrics import accuracy_score\n",
|
22 |
+
"from sklearn.metrics import classification_report\n",
|
23 |
+
"from sklearn.datasets import load_iris\n",
|
24 |
+
"iris=load_iris()"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 3,
|
30 |
+
"id": "dd4c544d",
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"X,y=iris.data,iris.target"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 6,
|
40 |
+
"id": "abe99084",
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"def train_using_gini(X_train, y_train):\n",
|
45 |
+
" clf_gini = DecisionTreeClassifier(criterion = \"gini\", random_state = 100,max_depth=3, min_samples_leaf=4)\n",
|
46 |
+
" clf_gini.fit(X_train, y_train)\n",
|
47 |
+
" return clf_gini"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 7,
|
53 |
+
"id": "3e9ddda5",
|
54 |
+
"metadata": {},
|
55 |
+
"outputs": [],
|
56 |
+
"source": [
|
57 |
+
"#Using Entropy\n",
|
58 |
+
"def train_using_entropy(X_train,y_train):\n",
|
59 |
+
"#Creating a classifier object\n",
|
60 |
+
" clf_entropy = DecisionTreeClassifier(criterion=\"entropy\",random_state = 100,max_depth=3,min_samples_leaf=4)\n",
|
61 |
+
"#Training\n",
|
62 |
+
" clf_entropy.fit(X_train,y_train)\n",
|
63 |
+
" return clf_entropy"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 8,
|
69 |
+
"id": "74fd9b39",
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"def prediction(X_test,clf_object):\n",
|
74 |
+
" y_pred=clf_object.predict(X_test)\n",
|
75 |
+
" print(\"Predicted values:\",y_pred)\n",
|
76 |
+
" return y_pred"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 9,
|
82 |
+
"id": "0b47818b",
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"#Function to calculate accuracy\n",
|
87 |
+
"def cal_accuracy(y_test,y_pred):\n",
|
88 |
+
" print(\"Confusion Matrix: \",confusion_matrix(y_test,y_pred))\n",
|
89 |
+
" print(\"Accuracy:\",accuracy_score(y_test,y_pred)*100)\n",
|
90 |
+
" print(\"Report :\",classification_report(y_test,y_pred))"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": 10,
|
96 |
+
"id": "0f94ba7d",
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [
|
99 |
+
{
|
100 |
+
"name": "stdout",
|
101 |
+
"output_type": "stream",
|
102 |
+
"text": [
|
103 |
+
"Dimensions for training data (105, 4)\n",
|
104 |
+
"Dimensions for testing data (105,)\n"
|
105 |
+
]
|
106 |
+
}
|
107 |
+
],
|
108 |
+
"source": [
|
109 |
+
"X_train, X_test, y_train, y_test = train_test_split( X, y, test_size = 0.3, random_state = 100)\n",
|
110 |
+
"print(\"Dimensions for training data\",X_train.shape)\n",
|
111 |
+
"print(\"Dimensions for testing data\",y_train.shape)"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 13,
|
117 |
+
"id": "a7ed365c",
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"name": "stdout",
|
122 |
+
"output_type": "stream",
|
123 |
+
"text": [
|
124 |
+
"Results Using Gini Index:\n",
|
125 |
+
"Predicted values: [2 0 2 0 2 2 0 0 2 0 0 2 0 0 2 1 1 2 2 2 2 0 2 0 1 2 1 0 1 2 1 1 1 0 0 1 0\n",
|
126 |
+
" 1 2 2 0 1 2 2 0]\n",
|
127 |
+
"Confusion Matrix: [[16 0 0]\n",
|
128 |
+
" [ 0 10 1]\n",
|
129 |
+
" [ 0 1 17]]\n",
|
130 |
+
"Accuracy: 95.55555555555556\n",
|
131 |
+
"Report : precision recall f1-score support\n",
|
132 |
+
"\n",
|
133 |
+
" 0 1.00 1.00 1.00 16\n",
|
134 |
+
" 1 0.91 0.91 0.91 11\n",
|
135 |
+
" 2 0.94 0.94 0.94 18\n",
|
136 |
+
"\n",
|
137 |
+
" accuracy 0.96 45\n",
|
138 |
+
" macro avg 0.95 0.95 0.95 45\n",
|
139 |
+
"weighted avg 0.96 0.96 0.96 45\n",
|
140 |
+
"\n"
|
141 |
+
]
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"source": [
|
145 |
+
"#Gini Index\n",
|
146 |
+
"clf_gini = train_using_gini(X_train, y_train)\n",
|
147 |
+
"print(\"Results Using Gini Index:\")\n",
|
148 |
+
"# Prediction using gini\n",
|
149 |
+
"y_pred_gini = prediction(X_test, clf_gini)\n",
|
150 |
+
"cal_accuracy(y_test, y_pred_gini)"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": 14,
|
156 |
+
"id": "0cd3759c",
|
157 |
+
"metadata": {},
|
158 |
+
"outputs": [
|
159 |
+
{
|
160 |
+
"name": "stdout",
|
161 |
+
"output_type": "stream",
|
162 |
+
"text": [
|
163 |
+
"Predicted values: [2 0 2 0 2 2 0 0 2 0 0 2 0 0 2 1 1 2 2 2 2 0 2 0 1 2 1 0 1 2 1 1 1 0 0 1 0\n",
|
164 |
+
" 1 2 2 0 1 2 2 0]\n",
|
165 |
+
"Confusion Matrix: [[16 0 0]\n",
|
166 |
+
" [ 0 10 1]\n",
|
167 |
+
" [ 0 1 17]]\n",
|
168 |
+
"Accuracy: 95.55555555555556\n",
|
169 |
+
"Report : precision recall f1-score support\n",
|
170 |
+
"\n",
|
171 |
+
" 0 1.00 1.00 1.00 16\n",
|
172 |
+
" 1 0.91 0.91 0.91 11\n",
|
173 |
+
" 2 0.94 0.94 0.94 18\n",
|
174 |
+
"\n",
|
175 |
+
" accuracy 0.96 45\n",
|
176 |
+
" macro avg 0.95 0.95 0.95 45\n",
|
177 |
+
"weighted avg 0.96 0.96 0.96 45\n",
|
178 |
+
"\n"
|
179 |
+
]
|
180 |
+
}
|
181 |
+
],
|
182 |
+
"source": [
|
183 |
+
"#Analysing Metrics using entropy\n",
|
184 |
+
"clf_entropy = train_using_entropy(X_train,y_train)\n",
|
185 |
+
"# Prediction using entropy\n",
|
186 |
+
"y_pred_entropy = prediction(X_test, clf_entropy)\n",
|
187 |
+
"cal_accuracy(y_test, y_pred_entropy)"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": 19,
|
193 |
+
"id": "bfb36a8a",
|
194 |
+
"metadata": {},
|
195 |
+
"outputs": [
|
196 |
+
{
|
197 |
+
"name": "stdout",
|
198 |
+
"output_type": "stream",
|
199 |
+
"text": [
|
200 |
+
"Results Using Gini Index:\n",
|
201 |
+
"Predicted values: [2 0 2 0 2 2 0 0 2 0 0 2 0 0 2 1 1 2 2 2 2 0 2 0 1 2 1 0 1 2 1 1 1 0 0 1 0\n",
|
202 |
+
" 1 2 2 0 1 2 2 0]\n",
|
203 |
+
"Confusion Matrix: [[16 0 0]\n",
|
204 |
+
" [ 0 10 1]\n",
|
205 |
+
" [ 0 1 17]]\n",
|
206 |
+
"Accuracy: 95.55555555555556\n",
|
207 |
+
"Report : precision recall f1-score support\n",
|
208 |
+
"\n",
|
209 |
+
" 0 1.00 1.00 1.00 16\n",
|
210 |
+
" 1 0.91 0.91 0.91 11\n",
|
211 |
+
" 2 0.94 0.94 0.94 18\n",
|
212 |
+
"\n",
|
213 |
+
" accuracy 0.96 45\n",
|
214 |
+
" macro avg 0.95 0.95 0.95 45\n",
|
215 |
+
"weighted avg 0.96 0.96 0.96 45\n",
|
216 |
+
"\n"
|
217 |
+
]
|
218 |
+
}
|
219 |
+
],
|
220 |
+
"source": [
|
221 |
+
"#lets observe what the result will be if we change dept to 2 and leafs to 3\n",
|
222 |
+
"def train_using_gini(X_train, y_train):\n",
|
223 |
+
" clf_gini = DecisionTreeClassifier(criterion = \"gini\", random_state = 150,max_depth=5, min_samples_leaf=3)\n",
|
224 |
+
" clf_gini.fit(X_train, y_train)\n",
|
225 |
+
" return clf_gini\n",
|
226 |
+
"clf_gini = train_using_gini(X_train, y_train)\n",
|
227 |
+
"print(\"Results Using Gini Index:\")\n",
|
228 |
+
"# Prediction using gini\n",
|
229 |
+
"y_pred_gini = prediction(X_test, clf_gini)\n",
|
230 |
+
"cal_accuracy(y_test, y_pred_gini)"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": null,
|
236 |
+
"id": "1ec89b9d",
|
237 |
+
"metadata": {},
|
238 |
+
"outputs": [],
|
239 |
+
"source": []
|
240 |
+
}
|
241 |
+
],
|
242 |
+
"metadata": {
|
243 |
+
"kernelspec": {
|
244 |
+
"display_name": "Python 3 (ipykernel)",
|
245 |
+
"language": "python",
|
246 |
+
"name": "python3"
|
247 |
+
},
|
248 |
+
"language_info": {
|
249 |
+
"codemirror_mode": {
|
250 |
+
"name": "ipython",
|
251 |
+
"version": 3
|
252 |
+
},
|
253 |
+
"file_extension": ".py",
|
254 |
+
"mimetype": "text/x-python",
|
255 |
+
"name": "python",
|
256 |
+
"nbconvert_exporter": "python",
|
257 |
+
"pygments_lexer": "ipython3",
|
258 |
+
"version": "3.9.13"
|
259 |
+
}
|
260 |
+
},
|
261 |
+
"nbformat": 4,
|
262 |
+
"nbformat_minor": 5
|
263 |
+
}
|