File size: 2,900 Bytes
2b8cce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: ExerciseLog
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ExerciseLog

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 8.8515
- Rouge1: 0.2517
- Rouge2: 0.0519
- Rougel: 0.2511
- Rougelsum: 0.2531
- Gen Len: 13.4286

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 2    | 12.0165         | 0.1562 | 0.0    | 0.1562 | 0.158     | 12.2857 |
| No log        | 2.0   | 4    | 11.5390         | 0.1966 | 0.0    | 0.1962 | 0.195     | 12.8571 |
| No log        | 3.0   | 6    | 11.0965         | 0.1966 | 0.0    | 0.1962 | 0.195     | 12.8571 |
| No log        | 4.0   | 8    | 10.7200         | 0.1833 | 0.0    | 0.1837 | 0.1833    | 13.7143 |
| No log        | 5.0   | 10   | 10.3922         | 0.1833 | 0.0    | 0.1837 | 0.1833    | 13.7143 |
| No log        | 6.0   | 12   | 10.0939         | 0.2439 | 0.0519 | 0.2449 | 0.2465    | 14.0    |
| No log        | 7.0   | 14   | 9.8265          | 0.2439 | 0.0519 | 0.2449 | 0.2465    | 14.0    |
| No log        | 8.0   | 16   | 9.5947          | 0.2439 | 0.0519 | 0.2449 | 0.2465    | 14.0    |
| No log        | 9.0   | 18   | 9.4007          | 0.2439 | 0.0519 | 0.2449 | 0.2465    | 14.0    |
| No log        | 10.0  | 20   | 9.2348          | 0.2439 | 0.0519 | 0.2449 | 0.2465    | 14.0    |
| No log        | 11.0  | 22   | 9.1026          | 0.2517 | 0.0519 | 0.2511 | 0.2531    | 13.4286 |
| No log        | 12.0  | 24   | 8.9968          | 0.2517 | 0.0519 | 0.2511 | 0.2531    | 13.4286 |
| No log        | 13.0  | 26   | 8.9197          | 0.2517 | 0.0519 | 0.2511 | 0.2531    | 13.4286 |
| No log        | 14.0  | 28   | 8.8720          | 0.2517 | 0.0519 | 0.2511 | 0.2531    | 13.4286 |
| No log        | 15.0  | 30   | 8.8515          | 0.2517 | 0.0519 | 0.2511 | 0.2531    | 13.4286 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1