|
import torch |
|
import torch.nn as nn |
|
import timm |
|
import types |
|
import math |
|
import torch.nn.functional as F |
|
|
|
|
|
class Slice(nn.Module): |
|
def __init__(self, start_index=1): |
|
super(Slice, self).__init__() |
|
self.start_index = start_index |
|
|
|
def forward(self, x): |
|
return x[:, self.start_index :] |
|
|
|
|
|
class AddReadout(nn.Module): |
|
def __init__(self, start_index=1): |
|
super(AddReadout, self).__init__() |
|
self.start_index = start_index |
|
|
|
def forward(self, x): |
|
if self.start_index == 2: |
|
readout = (x[:, 0] + x[:, 1]) / 2 |
|
else: |
|
readout = x[:, 0] |
|
return x[:, self.start_index :] + readout.unsqueeze(1) |
|
|
|
|
|
class ProjectReadout(nn.Module): |
|
def __init__(self, in_features, start_index=1): |
|
super(ProjectReadout, self).__init__() |
|
self.start_index = start_index |
|
|
|
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) |
|
|
|
def forward(self, x): |
|
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :]) |
|
features = torch.cat((x[:, self.start_index :], readout), -1) |
|
|
|
return self.project(features) |
|
|
|
|
|
class Transpose(nn.Module): |
|
def __init__(self, dim0, dim1): |
|
super(Transpose, self).__init__() |
|
self.dim0 = dim0 |
|
self.dim1 = dim1 |
|
|
|
def forward(self, x): |
|
x = x.transpose(self.dim0, self.dim1) |
|
return x |
|
|
|
|
|
def forward_vit(pretrained, x): |
|
b, c, h, w = x.shape |
|
|
|
glob = pretrained.model.forward_flex(x) |
|
|
|
layer_1 = pretrained.activations["1"] |
|
layer_2 = pretrained.activations["2"] |
|
layer_3 = pretrained.activations["3"] |
|
layer_4 = pretrained.activations["4"] |
|
|
|
layer_1 = pretrained.act_postprocess1[0:2](layer_1) |
|
layer_2 = pretrained.act_postprocess2[0:2](layer_2) |
|
layer_3 = pretrained.act_postprocess3[0:2](layer_3) |
|
layer_4 = pretrained.act_postprocess4[0:2](layer_4) |
|
|
|
unflatten = nn.Sequential( |
|
nn.Unflatten( |
|
2, |
|
torch.Size( |
|
[ |
|
h // pretrained.model.patch_size[1], |
|
w // pretrained.model.patch_size[0], |
|
] |
|
), |
|
) |
|
) |
|
|
|
if layer_1.ndim == 3: |
|
layer_1 = unflatten(layer_1) |
|
if layer_2.ndim == 3: |
|
layer_2 = unflatten(layer_2) |
|
if layer_3.ndim == 3: |
|
layer_3 = unflatten(layer_3) |
|
if layer_4.ndim == 3: |
|
layer_4 = unflatten(layer_4) |
|
|
|
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1) |
|
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2) |
|
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3) |
|
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4) |
|
|
|
return layer_1, layer_2, layer_3, layer_4 |
|
|
|
|
|
def _resize_pos_embed(self, posemb, gs_h, gs_w): |
|
posemb_tok, posemb_grid = ( |
|
posemb[:, : self.start_index], |
|
posemb[0, self.start_index :], |
|
) |
|
|
|
gs_old = int(math.sqrt(len(posemb_grid))) |
|
|
|
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) |
|
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") |
|
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) |
|
|
|
posemb = torch.cat([posemb_tok, posemb_grid], dim=1) |
|
|
|
return posemb |
|
|
|
|
|
def forward_flex(self, x): |
|
b, c, h, w = x.shape |
|
|
|
pos_embed = self._resize_pos_embed( |
|
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0] |
|
) |
|
|
|
B = x.shape[0] |
|
|
|
if hasattr(self.patch_embed, "backbone"): |
|
x = self.patch_embed.backbone(x) |
|
if isinstance(x, (list, tuple)): |
|
x = x[-1] |
|
|
|
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) |
|
|
|
if getattr(self, "dist_token", None) is not None: |
|
cls_tokens = self.cls_token.expand( |
|
B, -1, -1 |
|
) |
|
dist_token = self.dist_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, dist_token, x), dim=1) |
|
else: |
|
cls_tokens = self.cls_token.expand( |
|
B, -1, -1 |
|
) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
x = x + pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
|
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
|
|
activations = {} |
|
|
|
|
|
def get_activation(name): |
|
def hook(model, input, output): |
|
activations[name] = output |
|
|
|
return hook |
|
|
|
|
|
def get_readout_oper(vit_features, features, use_readout, start_index=1): |
|
if use_readout == "ignore": |
|
readout_oper = [Slice(start_index)] * len(features) |
|
elif use_readout == "add": |
|
readout_oper = [AddReadout(start_index)] * len(features) |
|
elif use_readout == "project": |
|
readout_oper = [ |
|
ProjectReadout(vit_features, start_index) for out_feat in features |
|
] |
|
else: |
|
assert ( |
|
False |
|
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" |
|
|
|
return readout_oper |
|
|
|
|
|
def _make_vit_b16_backbone( |
|
model, |
|
features=[96, 192, 384, 768], |
|
size=[384, 384], |
|
hooks=[2, 5, 8, 11], |
|
vit_features=768, |
|
use_readout="ignore", |
|
start_index=1, |
|
): |
|
pretrained = nn.Module() |
|
|
|
pretrained.model = model |
|
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) |
|
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) |
|
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) |
|
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) |
|
|
|
pretrained.activations = activations |
|
|
|
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) |
|
|
|
|
|
pretrained.act_postprocess1 = nn.Sequential( |
|
readout_oper[0], |
|
Transpose(1, 2), |
|
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), |
|
nn.Conv2d( |
|
in_channels=vit_features, |
|
out_channels=features[0], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
), |
|
nn.ConvTranspose2d( |
|
in_channels=features[0], |
|
out_channels=features[0], |
|
kernel_size=4, |
|
stride=4, |
|
padding=0, |
|
bias=True, |
|
dilation=1, |
|
groups=1, |
|
), |
|
) |
|
|
|
pretrained.act_postprocess2 = nn.Sequential( |
|
readout_oper[1], |
|
Transpose(1, 2), |
|
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), |
|
nn.Conv2d( |
|
in_channels=vit_features, |
|
out_channels=features[1], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
), |
|
nn.ConvTranspose2d( |
|
in_channels=features[1], |
|
out_channels=features[1], |
|
kernel_size=2, |
|
stride=2, |
|
padding=0, |
|
bias=True, |
|
dilation=1, |
|
groups=1, |
|
), |
|
) |
|
|
|
pretrained.act_postprocess3 = nn.Sequential( |
|
readout_oper[2], |
|
Transpose(1, 2), |
|
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), |
|
nn.Conv2d( |
|
in_channels=vit_features, |
|
out_channels=features[2], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
), |
|
) |
|
|
|
pretrained.act_postprocess4 = nn.Sequential( |
|
readout_oper[3], |
|
Transpose(1, 2), |
|
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), |
|
nn.Conv2d( |
|
in_channels=vit_features, |
|
out_channels=features[3], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
), |
|
nn.Conv2d( |
|
in_channels=features[3], |
|
out_channels=features[3], |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
), |
|
) |
|
|
|
pretrained.model.start_index = start_index |
|
pretrained.model.patch_size = [16, 16] |
|
|
|
|
|
|
|
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) |
|
pretrained.model._resize_pos_embed = types.MethodType( |
|
_resize_pos_embed, pretrained.model |
|
) |
|
|
|
return pretrained |
|
|
|
|
|
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): |
|
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) |
|
|
|
hooks = [5, 11, 17, 23] if hooks == None else hooks |
|
return _make_vit_b16_backbone( |
|
model, |
|
features=[256, 512, 1024, 1024], |
|
hooks=hooks, |
|
vit_features=1024, |
|
use_readout=use_readout, |
|
) |
|
|
|
|
|
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): |
|
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) |
|
|
|
hooks = [2, 5, 8, 11] if hooks == None else hooks |
|
return _make_vit_b16_backbone( |
|
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout |
|
) |
|
|
|
|
|
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None): |
|
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained) |
|
|
|
hooks = [2, 5, 8, 11] if hooks == None else hooks |
|
return _make_vit_b16_backbone( |
|
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout |
|
) |
|
|
|
|
|
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None): |
|
model = timm.create_model( |
|
"vit_deit_base_distilled_patch16_384", pretrained=pretrained |
|
) |
|
|
|
hooks = [2, 5, 8, 11] if hooks == None else hooks |
|
return _make_vit_b16_backbone( |
|
model, |
|
features=[96, 192, 384, 768], |
|
hooks=hooks, |
|
use_readout=use_readout, |
|
start_index=2, |
|
) |
|
|
|
|
|
def _make_vit_b_rn50_backbone( |
|
model, |
|
features=[256, 512, 768, 768], |
|
size=[384, 384], |
|
hooks=[0, 1, 8, 11], |
|
vit_features=768, |
|
use_vit_only=False, |
|
use_readout="ignore", |
|
start_index=1, |
|
): |
|
pretrained = nn.Module() |
|
|
|
pretrained.model = model |
|
|
|
if use_vit_only == True: |
|
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) |
|
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) |
|
else: |
|
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook( |
|
get_activation("1") |
|
) |
|
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook( |
|
get_activation("2") |
|
) |
|
|
|
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) |
|
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) |
|
|
|
pretrained.activations = activations |
|
|
|
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) |
|
|
|
if use_vit_only == True: |
|
pretrained.act_postprocess1 = nn.Sequential( |
|
readout_oper[0], |
|
Transpose(1, 2), |
|
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), |
|
nn.Conv2d( |
|
in_channels=vit_features, |
|
out_channels=features[0], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
), |
|
nn.ConvTranspose2d( |
|
in_channels=features[0], |
|
out_channels=features[0], |
|
kernel_size=4, |
|
stride=4, |
|
padding=0, |
|
bias=True, |
|
dilation=1, |
|
groups=1, |
|
), |
|
) |
|
|
|
pretrained.act_postprocess2 = nn.Sequential( |
|
readout_oper[1], |
|
Transpose(1, 2), |
|
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), |
|
nn.Conv2d( |
|
in_channels=vit_features, |
|
out_channels=features[1], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
), |
|
nn.ConvTranspose2d( |
|
in_channels=features[1], |
|
out_channels=features[1], |
|
kernel_size=2, |
|
stride=2, |
|
padding=0, |
|
bias=True, |
|
dilation=1, |
|
groups=1, |
|
), |
|
) |
|
else: |
|
pretrained.act_postprocess1 = nn.Sequential( |
|
nn.Identity(), nn.Identity(), nn.Identity() |
|
) |
|
pretrained.act_postprocess2 = nn.Sequential( |
|
nn.Identity(), nn.Identity(), nn.Identity() |
|
) |
|
|
|
pretrained.act_postprocess3 = nn.Sequential( |
|
readout_oper[2], |
|
Transpose(1, 2), |
|
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), |
|
nn.Conv2d( |
|
in_channels=vit_features, |
|
out_channels=features[2], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
), |
|
) |
|
|
|
pretrained.act_postprocess4 = nn.Sequential( |
|
readout_oper[3], |
|
Transpose(1, 2), |
|
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), |
|
nn.Conv2d( |
|
in_channels=vit_features, |
|
out_channels=features[3], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
), |
|
nn.Conv2d( |
|
in_channels=features[3], |
|
out_channels=features[3], |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
), |
|
) |
|
|
|
pretrained.model.start_index = start_index |
|
pretrained.model.patch_size = [16, 16] |
|
|
|
|
|
|
|
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) |
|
|
|
|
|
|
|
pretrained.model._resize_pos_embed = types.MethodType( |
|
_resize_pos_embed, pretrained.model |
|
) |
|
|
|
return pretrained |
|
|
|
|
|
def _make_pretrained_vitb_rn50_384( |
|
pretrained, use_readout="ignore", hooks=None, use_vit_only=False |
|
): |
|
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) |
|
|
|
hooks = [0, 1, 8, 11] if hooks == None else hooks |
|
return _make_vit_b_rn50_backbone( |
|
model, |
|
features=[256, 512, 768, 768], |
|
size=[384, 384], |
|
hooks=hooks, |
|
use_vit_only=use_vit_only, |
|
use_readout=use_readout, |
|
) |
|
|