|
""" |
|
Source url: https://github.com/lukemelas/EfficientNet-PyTorch |
|
Modified by Min Seok Lee, Wooseok Shin, Nikita Selin |
|
License: Apache License 2.0 |
|
Changes: |
|
- Added support for extracting edge features |
|
- Added support for extracting object features at different levels |
|
- Refactored the code |
|
""" |
|
from typing import Any, List |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from carvekit.ml.arch.tracerb7.effi_utils import ( |
|
get_same_padding_conv2d, |
|
calculate_output_image_size, |
|
MemoryEfficientSwish, |
|
drop_connect, |
|
round_filters, |
|
round_repeats, |
|
Swish, |
|
create_block_args, |
|
) |
|
|
|
|
|
class MBConvBlock(nn.Module): |
|
"""Mobile Inverted Residual Bottleneck Block. |
|
|
|
Args: |
|
block_args (namedtuple): BlockArgs, defined in utils.py. |
|
global_params (namedtuple): GlobalParam, defined in utils.py. |
|
image_size (tuple or list): [image_height, image_width]. |
|
|
|
References: |
|
[1] https://arxiv.org/abs/1704.04861 (MobileNet v1) |
|
[2] https://arxiv.org/abs/1801.04381 (MobileNet v2) |
|
[3] https://arxiv.org/abs/1905.02244 (MobileNet v3) |
|
""" |
|
|
|
def __init__(self, block_args, global_params, image_size=None): |
|
super().__init__() |
|
self._block_args = block_args |
|
self._bn_mom = ( |
|
1 - global_params.batch_norm_momentum |
|
) |
|
self._bn_eps = global_params.batch_norm_epsilon |
|
self.has_se = (self._block_args.se_ratio is not None) and ( |
|
0 < self._block_args.se_ratio <= 1 |
|
) |
|
self.id_skip = ( |
|
block_args.id_skip |
|
) |
|
|
|
|
|
inp = self._block_args.input_filters |
|
oup = ( |
|
self._block_args.input_filters * self._block_args.expand_ratio |
|
) |
|
if self._block_args.expand_ratio != 1: |
|
Conv2d = get_same_padding_conv2d(image_size=image_size) |
|
self._expand_conv = Conv2d( |
|
in_channels=inp, out_channels=oup, kernel_size=1, bias=False |
|
) |
|
self._bn0 = nn.BatchNorm2d( |
|
num_features=oup, momentum=self._bn_mom, eps=self._bn_eps |
|
) |
|
|
|
|
|
|
|
k = self._block_args.kernel_size |
|
s = self._block_args.stride |
|
Conv2d = get_same_padding_conv2d(image_size=image_size) |
|
self._depthwise_conv = Conv2d( |
|
in_channels=oup, |
|
out_channels=oup, |
|
groups=oup, |
|
kernel_size=k, |
|
stride=s, |
|
bias=False, |
|
) |
|
self._bn1 = nn.BatchNorm2d( |
|
num_features=oup, momentum=self._bn_mom, eps=self._bn_eps |
|
) |
|
image_size = calculate_output_image_size(image_size, s) |
|
|
|
|
|
if self.has_se: |
|
Conv2d = get_same_padding_conv2d(image_size=(1, 1)) |
|
num_squeezed_channels = max( |
|
1, int(self._block_args.input_filters * self._block_args.se_ratio) |
|
) |
|
self._se_reduce = Conv2d( |
|
in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1 |
|
) |
|
self._se_expand = Conv2d( |
|
in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1 |
|
) |
|
|
|
|
|
final_oup = self._block_args.output_filters |
|
Conv2d = get_same_padding_conv2d(image_size=image_size) |
|
self._project_conv = Conv2d( |
|
in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False |
|
) |
|
self._bn2 = nn.BatchNorm2d( |
|
num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps |
|
) |
|
self._swish = MemoryEfficientSwish() |
|
|
|
def forward(self, inputs, drop_connect_rate=None): |
|
"""MBConvBlock's forward function. |
|
|
|
Args: |
|
inputs (tensor): Input tensor. |
|
drop_connect_rate (bool): Drop connect rate (float, between 0 and 1). |
|
|
|
Returns: |
|
Output of this block after processing. |
|
""" |
|
|
|
|
|
x = inputs |
|
if self._block_args.expand_ratio != 1: |
|
x = self._expand_conv(inputs) |
|
x = self._bn0(x) |
|
x = self._swish(x) |
|
|
|
x = self._depthwise_conv(x) |
|
x = self._bn1(x) |
|
x = self._swish(x) |
|
|
|
|
|
if self.has_se: |
|
x_squeezed = F.adaptive_avg_pool2d(x, 1) |
|
x_squeezed = self._se_reduce(x_squeezed) |
|
x_squeezed = self._swish(x_squeezed) |
|
x_squeezed = self._se_expand(x_squeezed) |
|
x = torch.sigmoid(x_squeezed) * x |
|
|
|
|
|
x = self._project_conv(x) |
|
x = self._bn2(x) |
|
|
|
|
|
input_filters, output_filters = ( |
|
self._block_args.input_filters, |
|
self._block_args.output_filters, |
|
) |
|
if ( |
|
self.id_skip |
|
and self._block_args.stride == 1 |
|
and input_filters == output_filters |
|
): |
|
|
|
if drop_connect_rate: |
|
x = drop_connect(x, p=drop_connect_rate, training=self.training) |
|
x = x + inputs |
|
return x |
|
|
|
def set_swish(self, memory_efficient=True): |
|
"""Sets swish function as memory efficient (for training) or standard (for export). |
|
|
|
Args: |
|
memory_efficient (bool): Whether to use memory-efficient version of swish. |
|
""" |
|
self._swish = MemoryEfficientSwish() if memory_efficient else Swish() |
|
|
|
|
|
class EfficientNet(nn.Module): |
|
def __init__(self, blocks_args=None, global_params=None): |
|
super().__init__() |
|
assert isinstance(blocks_args, list), "blocks_args should be a list" |
|
assert len(blocks_args) > 0, "block args must be greater than 0" |
|
self._global_params = global_params |
|
self._blocks_args = blocks_args |
|
|
|
|
|
bn_mom = 1 - self._global_params.batch_norm_momentum |
|
bn_eps = self._global_params.batch_norm_epsilon |
|
|
|
|
|
image_size = global_params.image_size |
|
Conv2d = get_same_padding_conv2d(image_size=image_size) |
|
|
|
|
|
in_channels = 3 |
|
out_channels = round_filters( |
|
32, self._global_params |
|
) |
|
self._conv_stem = Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=2, bias=False |
|
) |
|
self._bn0 = nn.BatchNorm2d( |
|
num_features=out_channels, momentum=bn_mom, eps=bn_eps |
|
) |
|
image_size = calculate_output_image_size(image_size, 2) |
|
|
|
|
|
self._blocks = nn.ModuleList([]) |
|
for block_args in self._blocks_args: |
|
|
|
|
|
block_args = block_args._replace( |
|
input_filters=round_filters( |
|
block_args.input_filters, self._global_params |
|
), |
|
output_filters=round_filters( |
|
block_args.output_filters, self._global_params |
|
), |
|
num_repeat=round_repeats(block_args.num_repeat, self._global_params), |
|
) |
|
|
|
|
|
self._blocks.append( |
|
MBConvBlock(block_args, self._global_params, image_size=image_size) |
|
) |
|
image_size = calculate_output_image_size(image_size, block_args.stride) |
|
if block_args.num_repeat > 1: |
|
block_args = block_args._replace( |
|
input_filters=block_args.output_filters, stride=1 |
|
) |
|
for _ in range(block_args.num_repeat - 1): |
|
self._blocks.append( |
|
MBConvBlock(block_args, self._global_params, image_size=image_size) |
|
) |
|
|
|
|
|
self._swish = MemoryEfficientSwish() |
|
|
|
def set_swish(self, memory_efficient=True): |
|
"""Sets swish function as memory efficient (for training) or standard (for export). |
|
|
|
Args: |
|
memory_efficient (bool): Whether to use memory-efficient version of swish. |
|
|
|
""" |
|
self._swish = MemoryEfficientSwish() if memory_efficient else Swish() |
|
for block in self._blocks: |
|
block.set_swish(memory_efficient) |
|
|
|
def extract_endpoints(self, inputs): |
|
endpoints = dict() |
|
|
|
|
|
x = self._swish(self._bn0(self._conv_stem(inputs))) |
|
prev_x = x |
|
|
|
|
|
for idx, block in enumerate(self._blocks): |
|
drop_connect_rate = self._global_params.drop_connect_rate |
|
if drop_connect_rate: |
|
drop_connect_rate *= float(idx) / len( |
|
self._blocks |
|
) |
|
x = block(x, drop_connect_rate=drop_connect_rate) |
|
if prev_x.size(2) > x.size(2): |
|
endpoints["reduction_{}".format(len(endpoints) + 1)] = prev_x |
|
prev_x = x |
|
|
|
|
|
x = self._swish(self._bn1(self._conv_head(x))) |
|
endpoints["reduction_{}".format(len(endpoints) + 1)] = x |
|
|
|
return endpoints |
|
|
|
def _change_in_channels(self, in_channels): |
|
"""Adjust model's first convolution layer to in_channels, if in_channels not equals 3. |
|
|
|
Args: |
|
in_channels (int): Input data's channel number. |
|
""" |
|
if in_channels != 3: |
|
Conv2d = get_same_padding_conv2d(image_size=self._global_params.image_size) |
|
out_channels = round_filters(32, self._global_params) |
|
self._conv_stem = Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=2, bias=False |
|
) |
|
|
|
|
|
class EfficientEncoderB7(EfficientNet): |
|
def __init__(self): |
|
super().__init__( |
|
*create_block_args( |
|
width_coefficient=2.0, |
|
depth_coefficient=3.1, |
|
dropout_rate=0.5, |
|
image_size=600, |
|
) |
|
) |
|
self._change_in_channels(3) |
|
self.block_idx = [10, 17, 37, 54] |
|
self.channels = [48, 80, 224, 640] |
|
|
|
def initial_conv(self, inputs): |
|
x = self._swish(self._bn0(self._conv_stem(inputs))) |
|
return x |
|
|
|
def get_blocks(self, x, H, W, block_idx): |
|
features = [] |
|
for idx, block in enumerate(self._blocks): |
|
drop_connect_rate = self._global_params.drop_connect_rate |
|
if drop_connect_rate: |
|
drop_connect_rate *= float(idx) / len( |
|
self._blocks |
|
) |
|
x = block(x, drop_connect_rate=drop_connect_rate) |
|
if idx == block_idx[0]: |
|
features.append(x.clone()) |
|
if idx == block_idx[1]: |
|
features.append(x.clone()) |
|
if idx == block_idx[2]: |
|
features.append(x.clone()) |
|
if idx == block_idx[3]: |
|
features.append(x.clone()) |
|
|
|
return features |
|
|
|
def forward(self, inputs: torch.Tensor) -> List[Any]: |
|
B, C, H, W = inputs.size() |
|
x = self.initial_conv(inputs) |
|
return self.get_blocks( |
|
x, H, W, block_idx=self.block_idx |
|
) |
|
|