|
""" |
|
Source url: https://github.com/NathanUA/BASNet |
|
Modified by Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. |
|
License: MIT License |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
from torchvision import models |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class BasicBlockDe(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlockDe, self).__init__() |
|
|
|
self.convRes = conv3x3(inplanes, planes, stride) |
|
self.bnRes = nn.BatchNorm2d(planes) |
|
self.reluRes = nn.ReLU(inplace=True) |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = self.convRes(x) |
|
residual = self.bnRes(residual) |
|
residual = self.reluRes(residual) |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d( |
|
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * 4) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class RefUnet(nn.Module): |
|
def __init__(self, in_ch, inc_ch): |
|
super(RefUnet, self).__init__() |
|
|
|
self.conv0 = nn.Conv2d(in_ch, inc_ch, 3, padding=1) |
|
|
|
self.conv1 = nn.Conv2d(inc_ch, 64, 3, padding=1) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
|
|
self.pool1 = nn.MaxPool2d(2, 2, ceil_mode=True) |
|
|
|
self.conv2 = nn.Conv2d(64, 64, 3, padding=1) |
|
self.bn2 = nn.BatchNorm2d(64) |
|
self.relu2 = nn.ReLU(inplace=True) |
|
|
|
self.pool2 = nn.MaxPool2d(2, 2, ceil_mode=True) |
|
|
|
self.conv3 = nn.Conv2d(64, 64, 3, padding=1) |
|
self.bn3 = nn.BatchNorm2d(64) |
|
self.relu3 = nn.ReLU(inplace=True) |
|
|
|
self.pool3 = nn.MaxPool2d(2, 2, ceil_mode=True) |
|
|
|
self.conv4 = nn.Conv2d(64, 64, 3, padding=1) |
|
self.bn4 = nn.BatchNorm2d(64) |
|
self.relu4 = nn.ReLU(inplace=True) |
|
|
|
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True) |
|
|
|
self.conv5 = nn.Conv2d(64, 64, 3, padding=1) |
|
self.bn5 = nn.BatchNorm2d(64) |
|
self.relu5 = nn.ReLU(inplace=True) |
|
|
|
self.conv_d4 = nn.Conv2d(128, 64, 3, padding=1) |
|
self.bn_d4 = nn.BatchNorm2d(64) |
|
self.relu_d4 = nn.ReLU(inplace=True) |
|
|
|
self.conv_d3 = nn.Conv2d(128, 64, 3, padding=1) |
|
self.bn_d3 = nn.BatchNorm2d(64) |
|
self.relu_d3 = nn.ReLU(inplace=True) |
|
|
|
self.conv_d2 = nn.Conv2d(128, 64, 3, padding=1) |
|
self.bn_d2 = nn.BatchNorm2d(64) |
|
self.relu_d2 = nn.ReLU(inplace=True) |
|
|
|
self.conv_d1 = nn.Conv2d(128, 64, 3, padding=1) |
|
self.bn_d1 = nn.BatchNorm2d(64) |
|
self.relu_d1 = nn.ReLU(inplace=True) |
|
|
|
self.conv_d0 = nn.Conv2d(64, 1, 3, padding=1) |
|
|
|
self.upscore2 = nn.Upsample( |
|
scale_factor=2, mode="bilinear", align_corners=False |
|
) |
|
|
|
def forward(self, x): |
|
hx = x |
|
hx = self.conv0(hx) |
|
|
|
hx1 = self.relu1(self.bn1(self.conv1(hx))) |
|
hx = self.pool1(hx1) |
|
|
|
hx2 = self.relu2(self.bn2(self.conv2(hx))) |
|
hx = self.pool2(hx2) |
|
|
|
hx3 = self.relu3(self.bn3(self.conv3(hx))) |
|
hx = self.pool3(hx3) |
|
|
|
hx4 = self.relu4(self.bn4(self.conv4(hx))) |
|
hx = self.pool4(hx4) |
|
|
|
hx5 = self.relu5(self.bn5(self.conv5(hx))) |
|
|
|
hx = self.upscore2(hx5) |
|
|
|
d4 = self.relu_d4(self.bn_d4(self.conv_d4(torch.cat((hx, hx4), 1)))) |
|
hx = self.upscore2(d4) |
|
|
|
d3 = self.relu_d3(self.bn_d3(self.conv_d3(torch.cat((hx, hx3), 1)))) |
|
hx = self.upscore2(d3) |
|
|
|
d2 = self.relu_d2(self.bn_d2(self.conv_d2(torch.cat((hx, hx2), 1)))) |
|
hx = self.upscore2(d2) |
|
|
|
d1 = self.relu_d1(self.bn_d1(self.conv_d1(torch.cat((hx, hx1), 1)))) |
|
|
|
residual = self.conv_d0(d1) |
|
|
|
return x + residual |
|
|
|
|
|
class BASNet(nn.Module): |
|
def __init__(self, n_channels, n_classes): |
|
super(BASNet, self).__init__() |
|
|
|
resnet = models.resnet34(pretrained=False) |
|
|
|
|
|
|
|
self.inconv = nn.Conv2d(n_channels, 64, 3, padding=1) |
|
self.inbn = nn.BatchNorm2d(64) |
|
self.inrelu = nn.ReLU(inplace=True) |
|
|
|
|
|
self.encoder1 = resnet.layer1 |
|
|
|
self.encoder2 = resnet.layer2 |
|
|
|
self.encoder3 = resnet.layer3 |
|
|
|
self.encoder4 = resnet.layer4 |
|
|
|
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True) |
|
|
|
|
|
self.resb5_1 = BasicBlock(512, 512) |
|
self.resb5_2 = BasicBlock(512, 512) |
|
self.resb5_3 = BasicBlock(512, 512) |
|
|
|
self.pool5 = nn.MaxPool2d(2, 2, ceil_mode=True) |
|
|
|
|
|
self.resb6_1 = BasicBlock(512, 512) |
|
self.resb6_2 = BasicBlock(512, 512) |
|
self.resb6_3 = BasicBlock(512, 512) |
|
|
|
|
|
|
|
|
|
self.convbg_1 = nn.Conv2d(512, 512, 3, dilation=2, padding=2) |
|
self.bnbg_1 = nn.BatchNorm2d(512) |
|
self.relubg_1 = nn.ReLU(inplace=True) |
|
self.convbg_m = nn.Conv2d(512, 512, 3, dilation=2, padding=2) |
|
self.bnbg_m = nn.BatchNorm2d(512) |
|
self.relubg_m = nn.ReLU(inplace=True) |
|
self.convbg_2 = nn.Conv2d(512, 512, 3, dilation=2, padding=2) |
|
self.bnbg_2 = nn.BatchNorm2d(512) |
|
self.relubg_2 = nn.ReLU(inplace=True) |
|
|
|
|
|
|
|
|
|
self.conv6d_1 = nn.Conv2d(1024, 512, 3, padding=1) |
|
self.bn6d_1 = nn.BatchNorm2d(512) |
|
self.relu6d_1 = nn.ReLU(inplace=True) |
|
|
|
self.conv6d_m = nn.Conv2d(512, 512, 3, dilation=2, padding=2) |
|
self.bn6d_m = nn.BatchNorm2d(512) |
|
self.relu6d_m = nn.ReLU(inplace=True) |
|
|
|
self.conv6d_2 = nn.Conv2d(512, 512, 3, dilation=2, padding=2) |
|
self.bn6d_2 = nn.BatchNorm2d(512) |
|
self.relu6d_2 = nn.ReLU(inplace=True) |
|
|
|
|
|
self.conv5d_1 = nn.Conv2d(1024, 512, 3, padding=1) |
|
self.bn5d_1 = nn.BatchNorm2d(512) |
|
self.relu5d_1 = nn.ReLU(inplace=True) |
|
|
|
self.conv5d_m = nn.Conv2d(512, 512, 3, padding=1) |
|
self.bn5d_m = nn.BatchNorm2d(512) |
|
self.relu5d_m = nn.ReLU(inplace=True) |
|
|
|
self.conv5d_2 = nn.Conv2d(512, 512, 3, padding=1) |
|
self.bn5d_2 = nn.BatchNorm2d(512) |
|
self.relu5d_2 = nn.ReLU(inplace=True) |
|
|
|
|
|
self.conv4d_1 = nn.Conv2d(1024, 512, 3, padding=1) |
|
self.bn4d_1 = nn.BatchNorm2d(512) |
|
self.relu4d_1 = nn.ReLU(inplace=True) |
|
|
|
self.conv4d_m = nn.Conv2d(512, 512, 3, padding=1) |
|
self.bn4d_m = nn.BatchNorm2d(512) |
|
self.relu4d_m = nn.ReLU(inplace=True) |
|
|
|
self.conv4d_2 = nn.Conv2d(512, 256, 3, padding=1) |
|
self.bn4d_2 = nn.BatchNorm2d(256) |
|
self.relu4d_2 = nn.ReLU(inplace=True) |
|
|
|
|
|
self.conv3d_1 = nn.Conv2d(512, 256, 3, padding=1) |
|
self.bn3d_1 = nn.BatchNorm2d(256) |
|
self.relu3d_1 = nn.ReLU(inplace=True) |
|
|
|
self.conv3d_m = nn.Conv2d(256, 256, 3, padding=1) |
|
self.bn3d_m = nn.BatchNorm2d(256) |
|
self.relu3d_m = nn.ReLU(inplace=True) |
|
|
|
self.conv3d_2 = nn.Conv2d(256, 128, 3, padding=1) |
|
self.bn3d_2 = nn.BatchNorm2d(128) |
|
self.relu3d_2 = nn.ReLU(inplace=True) |
|
|
|
|
|
|
|
self.conv2d_1 = nn.Conv2d(256, 128, 3, padding=1) |
|
self.bn2d_1 = nn.BatchNorm2d(128) |
|
self.relu2d_1 = nn.ReLU(inplace=True) |
|
|
|
self.conv2d_m = nn.Conv2d(128, 128, 3, padding=1) |
|
self.bn2d_m = nn.BatchNorm2d(128) |
|
self.relu2d_m = nn.ReLU(inplace=True) |
|
|
|
self.conv2d_2 = nn.Conv2d(128, 64, 3, padding=1) |
|
self.bn2d_2 = nn.BatchNorm2d(64) |
|
self.relu2d_2 = nn.ReLU(inplace=True) |
|
|
|
|
|
self.conv1d_1 = nn.Conv2d(128, 64, 3, padding=1) |
|
self.bn1d_1 = nn.BatchNorm2d(64) |
|
self.relu1d_1 = nn.ReLU(inplace=True) |
|
|
|
self.conv1d_m = nn.Conv2d(64, 64, 3, padding=1) |
|
self.bn1d_m = nn.BatchNorm2d(64) |
|
self.relu1d_m = nn.ReLU(inplace=True) |
|
|
|
self.conv1d_2 = nn.Conv2d(64, 64, 3, padding=1) |
|
self.bn1d_2 = nn.BatchNorm2d(64) |
|
self.relu1d_2 = nn.ReLU(inplace=True) |
|
|
|
|
|
self.upscore6 = nn.Upsample( |
|
scale_factor=32, mode="bilinear", align_corners=False |
|
) |
|
self.upscore5 = nn.Upsample( |
|
scale_factor=16, mode="bilinear", align_corners=False |
|
) |
|
self.upscore4 = nn.Upsample( |
|
scale_factor=8, mode="bilinear", align_corners=False |
|
) |
|
self.upscore3 = nn.Upsample( |
|
scale_factor=4, mode="bilinear", align_corners=False |
|
) |
|
self.upscore2 = nn.Upsample( |
|
scale_factor=2, mode="bilinear", align_corners=False |
|
) |
|
|
|
|
|
self.outconvb = nn.Conv2d(512, 1, 3, padding=1) |
|
self.outconv6 = nn.Conv2d(512, 1, 3, padding=1) |
|
self.outconv5 = nn.Conv2d(512, 1, 3, padding=1) |
|
self.outconv4 = nn.Conv2d(256, 1, 3, padding=1) |
|
self.outconv3 = nn.Conv2d(128, 1, 3, padding=1) |
|
self.outconv2 = nn.Conv2d(64, 1, 3, padding=1) |
|
self.outconv1 = nn.Conv2d(64, 1, 3, padding=1) |
|
|
|
|
|
self.refunet = RefUnet(1, 64) |
|
|
|
def forward(self, x): |
|
hx = x |
|
|
|
|
|
hx = self.inconv(hx) |
|
hx = self.inbn(hx) |
|
hx = self.inrelu(hx) |
|
|
|
h1 = self.encoder1(hx) |
|
h2 = self.encoder2(h1) |
|
h3 = self.encoder3(h2) |
|
h4 = self.encoder4(h3) |
|
|
|
hx = self.pool4(h4) |
|
|
|
hx = self.resb5_1(hx) |
|
hx = self.resb5_2(hx) |
|
h5 = self.resb5_3(hx) |
|
|
|
hx = self.pool5(h5) |
|
|
|
hx = self.resb6_1(hx) |
|
hx = self.resb6_2(hx) |
|
h6 = self.resb6_3(hx) |
|
|
|
|
|
hx = self.relubg_1(self.bnbg_1(self.convbg_1(h6))) |
|
hx = self.relubg_m(self.bnbg_m(self.convbg_m(hx))) |
|
hbg = self.relubg_2(self.bnbg_2(self.convbg_2(hx))) |
|
|
|
|
|
|
|
hx = self.relu6d_1(self.bn6d_1(self.conv6d_1(torch.cat((hbg, h6), 1)))) |
|
hx = self.relu6d_m(self.bn6d_m(self.conv6d_m(hx))) |
|
hd6 = self.relu6d_2(self.bn6d_2(self.conv6d_2(hx))) |
|
|
|
hx = self.upscore2(hd6) |
|
|
|
hx = self.relu5d_1(self.bn5d_1(self.conv5d_1(torch.cat((hx, h5), 1)))) |
|
hx = self.relu5d_m(self.bn5d_m(self.conv5d_m(hx))) |
|
hd5 = self.relu5d_2(self.bn5d_2(self.conv5d_2(hx))) |
|
|
|
hx = self.upscore2(hd5) |
|
|
|
hx = self.relu4d_1(self.bn4d_1(self.conv4d_1(torch.cat((hx, h4), 1)))) |
|
hx = self.relu4d_m(self.bn4d_m(self.conv4d_m(hx))) |
|
hd4 = self.relu4d_2(self.bn4d_2(self.conv4d_2(hx))) |
|
|
|
hx = self.upscore2(hd4) |
|
|
|
hx = self.relu3d_1(self.bn3d_1(self.conv3d_1(torch.cat((hx, h3), 1)))) |
|
hx = self.relu3d_m(self.bn3d_m(self.conv3d_m(hx))) |
|
hd3 = self.relu3d_2(self.bn3d_2(self.conv3d_2(hx))) |
|
|
|
hx = self.upscore2(hd3) |
|
|
|
hx = self.relu2d_1(self.bn2d_1(self.conv2d_1(torch.cat((hx, h2), 1)))) |
|
hx = self.relu2d_m(self.bn2d_m(self.conv2d_m(hx))) |
|
hd2 = self.relu2d_2(self.bn2d_2(self.conv2d_2(hx))) |
|
|
|
hx = self.upscore2(hd2) |
|
|
|
hx = self.relu1d_1(self.bn1d_1(self.conv1d_1(torch.cat((hx, h1), 1)))) |
|
hx = self.relu1d_m(self.bn1d_m(self.conv1d_m(hx))) |
|
hd1 = self.relu1d_2(self.bn1d_2(self.conv1d_2(hx))) |
|
|
|
|
|
db = self.outconvb(hbg) |
|
db = self.upscore6(db) |
|
|
|
d6 = self.outconv6(hd6) |
|
d6 = self.upscore6(d6) |
|
|
|
d5 = self.outconv5(hd5) |
|
d5 = self.upscore5(d5) |
|
|
|
d4 = self.outconv4(hd4) |
|
d4 = self.upscore4(d4) |
|
|
|
d3 = self.outconv3(hd3) |
|
d3 = self.upscore3(d3) |
|
|
|
d2 = self.outconv2(hd2) |
|
d2 = self.upscore2(d2) |
|
|
|
d1 = self.outconv1(hd1) |
|
|
|
|
|
dout = self.refunet(d1) |
|
|
|
return ( |
|
torch.sigmoid(dout), |
|
torch.sigmoid(d1), |
|
torch.sigmoid(d2), |
|
torch.sigmoid(d3), |
|
torch.sigmoid(d4), |
|
torch.sigmoid(d5), |
|
torch.sigmoid(d6), |
|
torch.sigmoid(db), |
|
) |
|
|