jayparmr's picture
Upload folder using huggingface_hub
86248f3
raw
history blame
5.24 kB
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from internals.data.result import Result
from internals.pipelines.twoStepPipeline import two_step_pipeline
from internals.util.commons import disable_safety_checker, download_image
from internals.util.config import num_return_sequences
class AbstractPipeline:
def load(self, model_dir: str):
pass
def create(self, pipe):
pass
class Text2Img(AbstractPipeline):
@dataclass
class Params:
prompt: List[str] = None
modified_prompt: List[str] = None
prompt_left: List[str] = None
prompt_right: List[str] = None
def load(self, model_dir: str):
self.pipe = two_step_pipeline.from_pretrained(
model_dir, torch_dtype=torch.float16
).to("cuda")
self.__patch()
def create(self, pipeline: AbstractPipeline):
self.pipe = two_step_pipeline(**pipeline.pipe.components).to("cuda")
self.__patch()
def __patch(self):
self.pipe.enable_xformers_memory_efficient_attention()
@torch.inference_mode()
def process(
self,
params: Params,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[str] = None,
num_images_per_prompt: int = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
iteration: float = 3.0,
):
prompt = params.prompt
if params.prompt_left and params.prompt_right:
# multi-character pipelines
prompt = [params.prompt[0], params.prompt_left[0], params.prompt_right[0]]
result = self.pipe.multi_character_diffusion(
prompt=prompt,
pos=["1:1-0:0", "1:2-0:0", "1:2-0:1"],
mix_val=[0.2, 0.8, 0.8],
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=[negative_prompt or ""] * len(prompt),
num_images_per_prompt=num_return_sequences,
eta=eta,
# generator=generator,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
)
else:
# two step pipeline
modified_prompt = params.modified_prompt
result = self.pipe.two_step_pipeline(
prompt=prompt,
modified_prompts=modified_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=[negative_prompt or ""] * num_return_sequences,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
cross_attention_kwargs=cross_attention_kwargs,
iteration=iteration,
)
return Result.from_result(result)
class Img2Img(AbstractPipeline):
def load(self, model_dir: str):
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_dir, torch_dtype=torch.float16
).to("cuda")
self.__patch()
def create(self, pipeline: AbstractPipeline):
self.pipe = StableDiffusionImg2ImgPipeline(**pipeline.pipe.components).to(
"cuda"
)
self.__patch()
def __patch(self):
self.pipe.enable_xformers_memory_efficient_attention()
@torch.inference_mode()
def process(
self,
prompt: List[str],
imageUrl: str,
negative_prompt: List[str],
strength: float,
guidance_scale: float,
steps: int,
width: int,
height: int,
):
image = download_image(imageUrl).resize((width, height))
result = self.pipe.__call__(
prompt=prompt,
image=image,
strength=strength,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
num_inference_steps=steps,
)
return Result.from_result(result)