jayparmr's picture
Upload folder using huggingface_hub
a3d6c18
raw
history blame
4.96 kB
"""
Source url: https://github.com/OPHoperHPO/image-background-remove-tool
Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO].
License: Apache License 2.0
"""
import pathlib
from typing import List, Union
import PIL.Image
import numpy as np
import torch
from PIL import Image
from carvekit.ml.arch.u2net.u2net import U2NETArchitecture
from carvekit.ml.files.models_loc import u2net_full_pretrained
from carvekit.utils.image_utils import load_image, convert_image
from carvekit.utils.pool_utils import thread_pool_processing, batch_generator
__all__ = ["U2NET"]
class U2NET(U2NETArchitecture):
"""U^2-Net model interface"""
def __init__(
self,
layers_cfg="full",
device="cpu",
input_image_size: Union[List[int], int] = 320,
batch_size: int = 10,
load_pretrained: bool = True,
fp16: bool = False,
):
"""
Initialize the U2NET model
Args:
layers_cfg: neural network layers configuration
device: processing device
input_image_size: input image size
batch_size: the number of images that the neural network processes in one run
load_pretrained: loading pretrained model
fp16: use fp16 precision // not supported at this moment.
"""
super(U2NET, self).__init__(cfg_type=layers_cfg, out_ch=1)
self.device = device
self.batch_size = batch_size
if isinstance(input_image_size, list):
self.input_image_size = input_image_size[:2]
else:
self.input_image_size = (input_image_size, input_image_size)
self.to(device)
if load_pretrained:
self.load_state_dict(
torch.load(u2net_full_pretrained(), map_location=self.device)
)
self.eval()
def data_preprocessing(self, data: PIL.Image.Image) -> torch.FloatTensor:
"""
Transform input image to suitable data format for neural network
Args:
data: input image
Returns:
input for neural network
"""
resized = data.resize(self.input_image_size, resample=3)
# noinspection PyTypeChecker
resized_arr = np.array(resized, dtype=float)
temp_image = np.zeros((resized_arr.shape[0], resized_arr.shape[1], 3))
if np.max(resized_arr) != 0:
resized_arr /= np.max(resized_arr)
temp_image[:, :, 0] = (resized_arr[:, :, 0] - 0.485) / 0.229
temp_image[:, :, 1] = (resized_arr[:, :, 1] - 0.456) / 0.224
temp_image[:, :, 2] = (resized_arr[:, :, 2] - 0.406) / 0.225
temp_image = temp_image.transpose((2, 0, 1))
temp_image = np.expand_dims(temp_image, 0)
return torch.from_numpy(temp_image).type(torch.FloatTensor)
@staticmethod
def data_postprocessing(
data: torch.tensor, original_image: PIL.Image.Image
) -> PIL.Image.Image:
"""
Transforms output data from neural network to suitable data
format for using with other components of this framework.
Args:
data: output data from neural network
original_image: input image which was used for predicted data
Returns:
Segmentation mask as PIL Image instance
"""
data = data.unsqueeze(0)
mask = data[:, 0, :, :]
ma = torch.max(mask) # Normalizes prediction
mi = torch.min(mask)
predict = ((mask - mi) / (ma - mi)).squeeze()
predict_np = predict.cpu().data.numpy() * 255
mask = Image.fromarray(predict_np).convert("L")
mask = mask.resize(original_image.size, resample=3)
return mask
def __call__(
self, images: List[Union[str, pathlib.Path, PIL.Image.Image]]
) -> List[PIL.Image.Image]:
"""
Passes input images though neural network and returns segmentation masks as PIL.Image.Image instances
Args:
images: input images
Returns:
segmentation masks as for input images, as PIL.Image.Image instances
"""
collect_masks = []
for image_batch in batch_generator(images, self.batch_size):
images = thread_pool_processing(
lambda x: convert_image(load_image(x)), image_batch
)
batches = torch.vstack(
thread_pool_processing(self.data_preprocessing, images)
)
with torch.no_grad():
batches = batches.to(self.device)
masks, d2, d3, d4, d5, d6, d7 = super(U2NET, self).__call__(batches)
masks_cpu = masks.cpu()
del d2, d3, d4, d5, d6, d7, batches, masks
masks = thread_pool_processing(
lambda x: self.data_postprocessing(masks_cpu[x], images[x]),
range(len(images)),
)
collect_masks += masks
return collect_masks