jayparmr's picture
Upload folder using huggingface_hub
a3d6c18
raw
history blame
11.2 kB
"""
Modified by Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO].
Source url: https://github.com/MarcoForte/FBA_Matting
License: MIT License
"""
import torch
import torch.nn as nn
import carvekit.ml.arch.fba_matting.resnet_GN_WS as resnet_GN_WS
import carvekit.ml.arch.fba_matting.layers_WS as L
import carvekit.ml.arch.fba_matting.resnet_bn as resnet_bn
from functools import partial
class FBA(nn.Module):
def __init__(self, encoder: str):
super(FBA, self).__init__()
self.encoder = build_encoder(arch=encoder)
self.decoder = fba_decoder(batch_norm=True if "BN" in encoder else False)
def forward(self, image, two_chan_trimap, image_n, trimap_transformed):
resnet_input = torch.cat((image_n, trimap_transformed, two_chan_trimap), 1)
conv_out, indices = self.encoder(resnet_input, return_feature_maps=True)
return self.decoder(conv_out, image, indices, two_chan_trimap)
class ResnetDilatedBN(nn.Module):
def __init__(self, orig_resnet, dilate_scale=8):
super(ResnetDilatedBN, self).__init__()
if dilate_scale == 8:
orig_resnet.layer3.apply(partial(self._nostride_dilate, dilate=2))
orig_resnet.layer4.apply(partial(self._nostride_dilate, dilate=4))
elif dilate_scale == 16:
orig_resnet.layer4.apply(partial(self._nostride_dilate, dilate=2))
# take pretrained resnet, except AvgPool and FC
self.conv1 = orig_resnet.conv1
self.bn1 = orig_resnet.bn1
self.relu1 = orig_resnet.relu1
self.conv2 = orig_resnet.conv2
self.bn2 = orig_resnet.bn2
self.relu2 = orig_resnet.relu2
self.conv3 = orig_resnet.conv3
self.bn3 = orig_resnet.bn3
self.relu3 = orig_resnet.relu3
self.maxpool = orig_resnet.maxpool
self.layer1 = orig_resnet.layer1
self.layer2 = orig_resnet.layer2
self.layer3 = orig_resnet.layer3
self.layer4 = orig_resnet.layer4
def _nostride_dilate(self, m, dilate):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
# the convolution with stride
if m.stride == (2, 2):
m.stride = (1, 1)
if m.kernel_size == (3, 3):
m.dilation = (dilate // 2, dilate // 2)
m.padding = (dilate // 2, dilate // 2)
# other convoluions
else:
if m.kernel_size == (3, 3):
m.dilation = (dilate, dilate)
m.padding = (dilate, dilate)
def forward(self, x, return_feature_maps=False):
conv_out = [x]
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
conv_out.append(x)
x, indices = self.maxpool(x)
x = self.layer1(x)
conv_out.append(x)
x = self.layer2(x)
conv_out.append(x)
x = self.layer3(x)
conv_out.append(x)
x = self.layer4(x)
conv_out.append(x)
if return_feature_maps:
return conv_out, indices
return [x]
class Resnet(nn.Module):
def __init__(self, orig_resnet):
super(Resnet, self).__init__()
# take pretrained resnet, except AvgPool and FC
self.conv1 = orig_resnet.conv1
self.bn1 = orig_resnet.bn1
self.relu1 = orig_resnet.relu1
self.conv2 = orig_resnet.conv2
self.bn2 = orig_resnet.bn2
self.relu2 = orig_resnet.relu2
self.conv3 = orig_resnet.conv3
self.bn3 = orig_resnet.bn3
self.relu3 = orig_resnet.relu3
self.maxpool = orig_resnet.maxpool
self.layer1 = orig_resnet.layer1
self.layer2 = orig_resnet.layer2
self.layer3 = orig_resnet.layer3
self.layer4 = orig_resnet.layer4
def forward(self, x, return_feature_maps=False):
conv_out = []
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
conv_out.append(x)
x, indices = self.maxpool(x)
x = self.layer1(x)
conv_out.append(x)
x = self.layer2(x)
conv_out.append(x)
x = self.layer3(x)
conv_out.append(x)
x = self.layer4(x)
conv_out.append(x)
if return_feature_maps:
return conv_out
return [x]
class ResnetDilated(nn.Module):
def __init__(self, orig_resnet, dilate_scale=8):
super(ResnetDilated, self).__init__()
if dilate_scale == 8:
orig_resnet.layer3.apply(partial(self._nostride_dilate, dilate=2))
orig_resnet.layer4.apply(partial(self._nostride_dilate, dilate=4))
elif dilate_scale == 16:
orig_resnet.layer4.apply(partial(self._nostride_dilate, dilate=2))
# take pretrained resnet, except AvgPool and FC
self.conv1 = orig_resnet.conv1
self.bn1 = orig_resnet.bn1
self.relu = orig_resnet.relu
self.maxpool = orig_resnet.maxpool
self.layer1 = orig_resnet.layer1
self.layer2 = orig_resnet.layer2
self.layer3 = orig_resnet.layer3
self.layer4 = orig_resnet.layer4
def _nostride_dilate(self, m, dilate):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
# the convolution with stride
if m.stride == (2, 2):
m.stride = (1, 1)
if m.kernel_size == (3, 3):
m.dilation = (dilate // 2, dilate // 2)
m.padding = (dilate // 2, dilate // 2)
# other convoluions
else:
if m.kernel_size == (3, 3):
m.dilation = (dilate, dilate)
m.padding = (dilate, dilate)
def forward(self, x, return_feature_maps=False):
conv_out = [x]
x = self.relu(self.bn1(self.conv1(x)))
conv_out.append(x)
x, indices = self.maxpool(x)
x = self.layer1(x)
conv_out.append(x)
x = self.layer2(x)
conv_out.append(x)
x = self.layer3(x)
conv_out.append(x)
x = self.layer4(x)
conv_out.append(x)
if return_feature_maps:
return conv_out, indices
return [x]
def norm(dim, bn=False):
if bn is False:
return nn.GroupNorm(32, dim)
else:
return nn.BatchNorm2d(dim)
def fba_fusion(alpha, img, F, B):
F = alpha * img + (1 - alpha**2) * F - alpha * (1 - alpha) * B
B = (1 - alpha) * img + (2 * alpha - alpha**2) * B - alpha * (1 - alpha) * F
F = torch.clamp(F, 0, 1)
B = torch.clamp(B, 0, 1)
la = 0.1
alpha = (alpha * la + torch.sum((img - B) * (F - B), 1, keepdim=True)) / (
torch.sum((F - B) * (F - B), 1, keepdim=True) + la
)
alpha = torch.clamp(alpha, 0, 1)
return alpha, F, B
class fba_decoder(nn.Module):
def __init__(self, batch_norm=False):
super(fba_decoder, self).__init__()
pool_scales = (1, 2, 3, 6)
self.batch_norm = batch_norm
self.ppm = []
for scale in pool_scales:
self.ppm.append(
nn.Sequential(
nn.AdaptiveAvgPool2d(scale),
L.Conv2d(2048, 256, kernel_size=1, bias=True),
norm(256, self.batch_norm),
nn.LeakyReLU(),
)
)
self.ppm = nn.ModuleList(self.ppm)
self.conv_up1 = nn.Sequential(
L.Conv2d(
2048 + len(pool_scales) * 256, 256, kernel_size=3, padding=1, bias=True
),
norm(256, self.batch_norm),
nn.LeakyReLU(),
L.Conv2d(256, 256, kernel_size=3, padding=1),
norm(256, self.batch_norm),
nn.LeakyReLU(),
)
self.conv_up2 = nn.Sequential(
L.Conv2d(256 + 256, 256, kernel_size=3, padding=1, bias=True),
norm(256, self.batch_norm),
nn.LeakyReLU(),
)
if self.batch_norm:
d_up3 = 128
else:
d_up3 = 64
self.conv_up3 = nn.Sequential(
L.Conv2d(256 + d_up3, 64, kernel_size=3, padding=1, bias=True),
norm(64, self.batch_norm),
nn.LeakyReLU(),
)
self.unpool = nn.MaxUnpool2d(2, stride=2)
self.conv_up4 = nn.Sequential(
nn.Conv2d(64 + 3 + 3 + 2, 32, kernel_size=3, padding=1, bias=True),
nn.LeakyReLU(),
nn.Conv2d(32, 16, kernel_size=3, padding=1, bias=True),
nn.LeakyReLU(),
nn.Conv2d(16, 7, kernel_size=1, padding=0, bias=True),
)
def forward(self, conv_out, img, indices, two_chan_trimap):
conv5 = conv_out[-1]
input_size = conv5.size()
ppm_out = [conv5]
for pool_scale in self.ppm:
ppm_out.append(
nn.functional.interpolate(
pool_scale(conv5),
(input_size[2], input_size[3]),
mode="bilinear",
align_corners=False,
)
)
ppm_out = torch.cat(ppm_out, 1)
x = self.conv_up1(ppm_out)
x = torch.nn.functional.interpolate(
x, scale_factor=2, mode="bilinear", align_corners=False
)
x = torch.cat((x, conv_out[-4]), 1)
x = self.conv_up2(x)
x = torch.nn.functional.interpolate(
x, scale_factor=2, mode="bilinear", align_corners=False
)
x = torch.cat((x, conv_out[-5]), 1)
x = self.conv_up3(x)
x = torch.nn.functional.interpolate(
x, scale_factor=2, mode="bilinear", align_corners=False
)
x = torch.cat((x, conv_out[-6][:, :3], img, two_chan_trimap), 1)
output = self.conv_up4(x)
alpha = torch.clamp(output[:, 0][:, None], 0, 1)
F = torch.sigmoid(output[:, 1:4])
B = torch.sigmoid(output[:, 4:7])
# FBA Fusion
alpha, F, B = fba_fusion(alpha, img, F, B)
output = torch.cat((alpha, F, B), 1)
return output
def build_encoder(arch="resnet50_GN"):
if arch == "resnet50_GN_WS":
orig_resnet = resnet_GN_WS.__dict__["l_resnet50"]()
net_encoder = ResnetDilated(orig_resnet, dilate_scale=8)
elif arch == "resnet50_BN":
orig_resnet = resnet_bn.__dict__["l_resnet50"]()
net_encoder = ResnetDilatedBN(orig_resnet, dilate_scale=8)
else:
raise ValueError("Architecture undefined!")
num_channels = 3 + 6 + 2
if num_channels > 3:
net_encoder_sd = net_encoder.state_dict()
conv1_weights = net_encoder_sd["conv1.weight"]
c_out, c_in, h, w = conv1_weights.size()
conv1_mod = torch.zeros(c_out, num_channels, h, w)
conv1_mod[:, :3, :, :] = conv1_weights
conv1 = net_encoder.conv1
conv1.in_channels = num_channels
conv1.weight = torch.nn.Parameter(conv1_mod)
net_encoder.conv1 = conv1
net_encoder_sd["conv1.weight"] = conv1_mod
net_encoder.load_state_dict(net_encoder_sd)
return net_encoder