|
import cv2 |
|
import numpy as np |
|
import torch |
|
from einops import rearrange |
|
|
|
from .api import MiDaSInference |
|
|
|
model = None |
|
|
|
|
|
def apply_midas(input_image, a=np.pi * 2.0, bg_th=0.1): |
|
global model |
|
if not model: |
|
model = MiDaSInference(model_type="dpt_hybrid").cuda() |
|
assert input_image.ndim == 3 |
|
image_depth = input_image |
|
with torch.no_grad(): |
|
image_depth = torch.from_numpy(image_depth).float().cuda() |
|
image_depth = image_depth / 127.5 - 1.0 |
|
image_depth = rearrange(image_depth, "h w c -> 1 c h w") |
|
depth = model(image_depth)[0] |
|
|
|
depth_pt = depth.clone() |
|
depth_pt -= torch.min(depth_pt) |
|
depth_pt /= torch.max(depth_pt) |
|
depth_pt = depth_pt.cpu().numpy() |
|
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
depth_np = depth.cpu().numpy() |
|
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3) |
|
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3) |
|
z = np.ones_like(x) * a |
|
x[depth_pt < bg_th] = 0 |
|
y[depth_pt < bg_th] = 0 |
|
normal = np.stack([x, y, z], axis=2) |
|
normal /= np.sum(normal**2.0, axis=2, keepdims=True) ** 0.5 |
|
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8) |
|
|
|
return depth_image, normal_image |
|
|